IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1433-d511349.html
   My bibliography  Save this article

Hydrolysis-Based Hydrogen Generation Investigation of Aluminum System Adding Low-Melting Metals

Author

Listed:
  • Zeng Gao

    (School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China)

  • Fei Ji

    (School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China)

  • Dongfeng Cheng

    (School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China)

  • Congxin Yin

    (School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China)

  • Jitai Niu

    (School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Josip Brnic

    (Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia)

Abstract

In this age of human civilization, there is a need for more efficient, cleaner, and renewable energy as opposed to that provided by nonrenewable sources such as coal and oil. In this sense, hydrogen energy has been proven to be a better choice. In this paper, a portable graphite crucible metal smelting furnace was used to prepare ten multi-element aluminum alloy ingots with different components. The microstructure and phase composition of the ingots and reaction products were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The reaction was carried out in a constant temperature water bath furnace at 60 °C, and the hydrogen production performance of the multi-element aluminum alloys in different proportions was compared by the drainage gas collection method. The experimental results show that the as-cast microstructure of Al–Ga–In–Sn aluminum alloy is composed of a solid solution of Al and part of Ga, and a second phase of In 3 Sn. After the hydrolysis reaction, the products were dried at 150 °C and then analyzed by XRD. The products were mainly composed of AlOOH and In 3 Sn. Alloys with different compositions react at the same hydrolysis temperature, and the hydrogen production performance is related to the ratio of low-melting-point metal elements. By comparing two different ratios of Ga–In–Sn (GIS), the hydrogen production capacity and production rate when the ratio is 6:3:1 are generally higher than those when the ratio is 7:2:1. The second phase content affects the hydrogen production performance.

Suggested Citation

  • Zeng Gao & Fei Ji & Dongfeng Cheng & Congxin Yin & Jitai Niu & Josip Brnic, 2021. "Hydrolysis-Based Hydrogen Generation Investigation of Aluminum System Adding Low-Melting Metals," Energies, MDPI, vol. 14(5), pages 1-12, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1433-:d:511349
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1433/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1433/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Momirlan, M. & Veziroglu, T., 1999. "Recent directions of world hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 3(2-3), pages 219-231, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koroneos, C. & Dompros, A. & Roumbas, G. & Moussiopoulos, N., 2005. "Advantages of the use of hydrogen fuel as compared to kerosene," Resources, Conservation & Recycling, Elsevier, vol. 44(2), pages 99-113.
    2. Khan, Mohammed N. & Shamim, Tariq, 2016. "Investigation of hydrogen generation in a three reactor chemical looping reforming process," Applied Energy, Elsevier, vol. 162(C), pages 1186-1194.
    3. Yoong, L.S. & Chong, F.K. & Dutta, Binay K., 2009. "Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light," Energy, Elsevier, vol. 34(10), pages 1652-1661.
    4. Saxena, R.C. & Seal, Diptendu & Kumar, Satinder & Goyal, H.B., 2008. "Thermo-chemical routes for hydrogen rich gas from biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1909-1927, September.
    5. Ma, Yufei & Guan, Guoqing & Hao, Xiaogang & Cao, Ji & Abudula, Abuliti, 2017. "Molybdenum carbide as alternative catalyst for hydrogen production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1101-1129.
    6. Beccali, M. & Brunone, S. & Cellura, M. & Franzitta, V., 2008. "Energy, economic and environmental analysis on RET-hydrogen systems in residential buildings," Renewable Energy, Elsevier, vol. 33(3), pages 366-382.
    7. Yilmaz, Fatih & Balta, M. Tolga & Selbaş, Reşat, 2016. "A review of solar based hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 171-178.
    8. Midilli, A. & Ay, M. & Dincer, I. & Rosen, M. A., 2005. "On hydrogen and hydrogen energy strategies: I: current status and needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(3), pages 255-271, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1433-:d:511349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.