IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p900-d496211.html
   My bibliography  Save this article

A Selective Solar Absorber for Unconcentrated Solar Thermal Panels

Author

Listed:
  • Davide De Maio

    (Industrial Engineering Department, University of Napoli “Federico II”, 80126 Napoli, Italy
    National Research Council of Italy, Napoli Unit, Institute of Applied Sciences and Intelligent Systems, 80131 Napoli, Italy
    These authors contributed equally to this work.)

  • Carmine D’Alessandro

    (Industrial Engineering Department, University of Napoli “Federico II”, 80126 Napoli, Italy
    National Research Council of Italy, Napoli Unit, Institute of Applied Sciences and Intelligent Systems, 80131 Napoli, Italy
    These authors contributed equally to this work.)

  • Antonio Caldarelli

    (Industrial Engineering Department, University of Napoli “Federico II”, 80126 Napoli, Italy
    National Research Council of Italy, Napoli Unit, Institute of Applied Sciences and Intelligent Systems, 80131 Napoli, Italy)

  • Daniela De Luca

    (National Research Council of Italy, Napoli Unit, Institute of Applied Sciences and Intelligent Systems, 80131 Napoli, Italy
    Physics Department, University of Napoli “Federico II”, 80126 Napoli, Italy)

  • Emiliano Di Gennaro

    (Physics Department, University of Napoli “Federico II”, 80126 Napoli, Italy)

  • Roberto Russo

    (National Research Council of Italy, Napoli Unit, Institute of Applied Sciences and Intelligent Systems, 80131 Napoli, Italy)

  • Marilena Musto

    (Industrial Engineering Department, University of Napoli “Federico II”, 80126 Napoli, Italy)

Abstract

A new Selective Solar Absorber, designed to improve the Sun-to-thermal conversion efficiency at mid temperatures in high vacuum flat thermal collectors, is presented. Efficiency has been evaluated by using analytical formulas and a numerical thermal model. Both results have been experimentally validated using a commercial absorber in a custom experimental set-up. The optimization procedure aimed at obtaining Selective Solar Absorber is presented and discussed in the case of a metal dielectric multilayer based on Cr 2 O 3 and Ti. The importance of adopting a real spectral emissivity curve to estimate high thermal efficiency at high temperatures in a selective solar absorber is outlined. Optimized absorber multilayers can be 10% more efficient than the commercial alternative at 250 ° C operating temperatures, reaching 400 ° C stagnation temperature without Sun concentration confirming that high vacuum flat thermal collectors can give important contribution to the energy transition from fossil fuels to renewable energy for efficient heat production.

Suggested Citation

  • Davide De Maio & Carmine D’Alessandro & Antonio Caldarelli & Daniela De Luca & Emiliano Di Gennaro & Roberto Russo & Marilena Musto, 2021. "A Selective Solar Absorber for Unconcentrated Solar Thermal Panels," Energies, MDPI, vol. 14(4), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:900-:d:496211
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/900/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Keng-Te Lin & Han Lin & Tieshan Yang & Baohua Jia, 2020. "Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Moss, R.W. & Henshall, P. & Arya, F. & Shire, G.S.F. & Hyde, T. & Eames, P.C., 2018. "Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels," Applied Energy, Elsevier, vol. 216(C), pages 588-601.
    3. Chapman, Andrew J. & McLellan, Benjamin C. & Tezuka, Tetsuo, 2018. "Prioritizing mitigation efforts considering co-benefits, equity and energy justice: Fossil fuel to renewable energy transition pathways," Applied Energy, Elsevier, vol. 219(C), pages 187-198.
    4. Yang, Honglun & Wang, Qiliang & Huang, Yihang & Feng, Junsheng & Ao, Xianze & Hu, Maobin & Pei, Gang, 2019. "Spectral optimization of solar selective absorbing coating for parabolic trough receiver," Energy, Elsevier, vol. 183(C), pages 639-650.
    5. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    6. Lauterbach, C. & Schmitt, B. & Jordan, U. & Vajen, K., 2012. "The potential of solar heat for industrial processes in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5121-5130.
    7. Shahsavari, Amir & Akbari, Morteza, 2018. "Potential of solar energy in developing countries for reducing energy-related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 275-291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Luca, Daniela & Strazzullo, Paolo & Di Gennaro, Emiliano & Caldarelli, Antonio & Gaudino, Eliana & Musto, Marilena & Russo, Roberto, 2023. "High vacuum flat plate photovoltaic-thermal (HV PV-T) collectors: Efficiency analysis," Applied Energy, Elsevier, vol. 352(C).
    2. Ehab AlShamaileh & Iessa Sabbe Moosa & Heba Al-Fayyad & Bashar Lahlouh & Hussein A. Kazem & Qusay Abu-Afifeh & Bety S. Al-Saqarat & Muayad Esaifan & Imad Hamadneh, 2022. "Performance Comparison and Light Reflectance of Al, Cu, and Fe Metals in Direct Contact Flat Solar Heating Systems," Energies, MDPI, vol. 15(23), pages 1-15, November.
    3. Henok G. Gebretinsae & Meresa G. Tsegay & Giday G. Welegergs & Malik Maaza & Zebib Y. Nuru, 2022. "Effect of Rotational Speed on the Structural, Morphological, and Optical Properties of Biosynthesized Nickel Oxide Thin Films for Selective Solar Absorber Nanocoatings," Energies, MDPI, vol. 15(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D’Alessandro, Carmine & De Maio, Davide & Musto, Marilena & De Luca, Daniela & Di Gennaro, Emiliano & Bermel, Peter & Russo, Roberto, 2021. "Performance analysis of evacuated solar thermal panels with an infrared mirror," Applied Energy, Elsevier, vol. 288(C).
    2. Hu, Mingke & Zhao, Bin & Ao, Xianze & Zhao, Pinghui & Su, Yuehong & Pei, Gang, 2018. "Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system," Applied Energy, Elsevier, vol. 231(C), pages 288-300.
    3. Fankhauser, Samuel & Hepburn, Cameron, 2010. "Designing carbon markets. Part I: Carbon markets in time," Energy Policy, Elsevier, vol. 38(8), pages 4363-4370, August.
    4. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    5. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.
    6. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    7. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    8. Sam Fankhauser & Cameron Hepburn, 2009. "Carbon markets in space and time," GRI Working Papers 3, Grantham Research Institute on Climate Change and the Environment.
    9. Weth, Mark A. & Baltzer, Markus & Bertram, Christoph & Hilaire, Jérôme & Johnston, Craig, 2024. "The scenario-based equity price impact induced by greenhouse gas emissions," Discussion Papers 30/2024, Deutsche Bundesbank.
    10. Van Uffelen, N. & Taebi, B. & Pesch, Udo, 2024. "Revisiting the energy justice framework: Doing justice to normative uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. van der Ploeg, Frederick & Rezai, Armon, 2017. "Cumulative emissions, unburnable fossil fuel, and the optimal carbon tax," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 216-222.
    12. Francisco José Sepúlveda & María Teresa Miranda & Irene Montero & José Ignacio Arranz & Francisco Javier Lozano & Manuel Matamoros & Paloma Rodríguez, 2019. "Analysis of Potential Use of Linear Fresnel Collector for Direct Steam Generation in Industries of the Southwest of Europe," Energies, MDPI, vol. 12(21), pages 1-15, October.
    13. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    14. Waldemar Karpa & Antonio Grginović, 2021. "(Not So) Stranded: The Case of Coal in Poland," Energies, MDPI, vol. 14(24), pages 1-16, December.
    15. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng & Li, Yunhai, 2023. "Mathematical and experimental investigation about the dual-source heat pump integrating low concentrated photovoltaic and finned-tube exchanger," Energy, Elsevier, vol. 263(PE).
    16. Qian, Yuan & Scherer, Laura & Tukker, Arnold & Behrens, Paul, 2020. "China's potential SO2 emissions from coal by 2050," Energy Policy, Elsevier, vol. 147(C).
    17. Colo, Philippe, 2021. "Cassandra's Curse: A Second Tragedy of the Commons," MPRA Paper 110878, University Library of Munich, Germany.
    18. Zhao, Kuan & Wang, Jifen & Xie, Huaqing, 2024. "A multifunctional flexible composite phase-change film with excellent solar driven thermal management," Renewable Energy, Elsevier, vol. 227(C).
    19. Wang, Qiliang & Yao, Yao & Shen, Zhicheng & Yang, Hongxing, 2023. "A hybrid parabolic trough solar collector system integrated with photovoltaics," Applied Energy, Elsevier, vol. 329(C).
    20. Kirchhoff, Hannes & Strunz, Kai, 2019. "Key drivers for successful development of peer-to-peer microgrids for swarm electrification," Applied Energy, Elsevier, vol. 244(C), pages 46-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:900-:d:496211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.