IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15116-z.html
   My bibliography  Save this article

Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion

Author

Listed:
  • Keng-Te Lin

    (Swinburne University of Technology)

  • Han Lin

    (Swinburne University of Technology)

  • Tieshan Yang

    (Swinburne University of Technology)

  • Baohua Jia

    (Swinburne University of Technology
    The Australian Research Council (ARC) Industrial Transformation Training Centre in Surface Engineering for Advanced Materials (SEAM))

Abstract

An ideal solar-thermal absorber requires efficient selective absorption with a tunable bandwidth, excellent thermal conductivity and stability, and a simple structure for effective solar thermal energy conversion. Despite various solar absorbers having been demonstrated, these conditions are challenging to achieve simultaneously using conventional materials and structures. Here, we propose and demonstrate three-dimensional structured graphene metamaterial (SGM) that takes advantages of wavelength selectivity from metallic trench-like structures and broadband dispersionless nature and excellent thermal conductivity from the ultrathin graphene metamaterial film. The SGM absorbers exhibit superior solar selective and omnidirectional absorption, flexible tunability of wavelength selective absorption, excellent photothermal performance, and high thermal stability. Impressive solar-to-thermal conversion efficiency of 90.1% and solar-to-vapor efficiency of 96.2% have been achieved. These superior properties of the SGM absorber suggest it has a great potential for practical applications of solar thermal energy harvesting and manipulation.

Suggested Citation

  • Keng-Te Lin & Han Lin & Tieshan Yang & Baohua Jia, 2020. "Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15116-z
    DOI: 10.1038/s41467-020-15116-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15116-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15116-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shang, Bofeng & Yang, Gui & Zhang, Bin, 2024. "Phase change nanocapsules incorporated with nanodiamonds for efficient photothermal energy conversion and storage," Applied Energy, Elsevier, vol. 360(C).
    2. Zhao, Kuan & Wang, Jifen & Xie, Huaqing, 2024. "A multifunctional flexible composite phase-change film with excellent solar driven thermal management," Renewable Energy, Elsevier, vol. 227(C).
    3. Hu, Mingke & Zhao, Bin & Suhendri, S. & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Yang, Ronggui & Su, Yuehong & Pei, Gang, 2022. "Experimental study on a hybrid solar photothermic and radiative cooling collector equipped with a rotatable absorber/emitter plate," Applied Energy, Elsevier, vol. 306(PB).
    4. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Yaguang Li & Xianhua Bai & Dachao Yuan & Fengyu Zhang & Bo Li & Xingyuan San & Baolai Liang & Shufang Wang & Jun Luo & Guangsheng Fu, 2022. "General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Yi Zhou & Tianpeng Ding & Jun Guo & Guoqiang Xu & Mingqiang Cheng & Chen Zhang & Xiao-Qiao Wang & Wanheng Lu & Wei Li Ong & Jiangyu Li & Jiaqing He & Cheng-Wei Qiu & Ghim Wei Ho, 2023. "Giant polarization ripple in transverse pyroelectricity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Wang, Qiliang & Li, Guiqiang & Cao, Jingyu & Hu, Mingke & Pei, Gang & Yang, Hongxing, 2022. "An analytical study on optimal spectral characters of solar absorbing coating and thermal performance potential of solar power tower," Renewable Energy, Elsevier, vol. 200(C), pages 1300-1315.
    8. Feng, Mengqi & Lv, Song & Deng, Jingcai & Guo, Ying & Wu, Yangyang & Shi, Guoqing & Zhang, Mingming, 2023. "An overview of environmental energy harvesting by thermoelectric generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    9. Wang, Chengbing & Li, Wei & Li, Zhengtong & Fang, Baizeng, 2020. "Solar thermal harvesting based on self-doped nanocermet: Structural merits, design strategies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Li, Zhijing & Lei, Hui & Kan, Ankang & Xie, Huaqing & Yu, Wei, 2021. "Photothermal applications based on graphene and its derivatives: A state-of-the-art review," Energy, Elsevier, vol. 216(C).
    11. Davide De Maio & Carmine D’Alessandro & Antonio Caldarelli & Daniela De Luca & Emiliano Di Gennaro & Roberto Russo & Marilena Musto, 2021. "A Selective Solar Absorber for Unconcentrated Solar Thermal Panels," Energies, MDPI, vol. 14(4), pages 1-13, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15116-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.