IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p816-d493034.html
   My bibliography  Save this article

Performance Optimization of Luminescent Solar Concentrators under Several Shading Conditions

Author

Listed:
  • Paolo Bernardoni

    (Physics and Earth Sciences Department via Saragat 1, University of Ferrara, 44122 Ferrara, Italy)

  • Giulio Mangherini

    (Physics and Earth Sciences Department via Saragat 1, University of Ferrara, 44122 Ferrara, Italy)

  • Marinela Gjestila

    (Physics and Earth Sciences Department via Saragat 1, University of Ferrara, 44122 Ferrara, Italy)

  • Alfredo Andreoli

    (Physics and Earth Sciences Department via Saragat 1, University of Ferrara, 44122 Ferrara, Italy)

  • Donato Vincenzi

    (Physics and Earth Sciences Department via Saragat 1, University of Ferrara, 44122 Ferrara, Italy)

Abstract

The need of clean energy is constantly increasing, and Building Integrated PhotoVoltaic (BIPV) technologies represent valuable assets to expand even further the photovoltaic market. Thanks to BIPVs. a new concept of local electric microgrid will probably emerge as this kind of technology can turn buildings from energy wells to energy sources. Luminescent Solar Concentrator (LSC) panels are perfect to achieve this goal, indeed, contrary to standard flat PhotoVoltaic (PV) modules, they can be exploited in transparent or semi-transparent building façades. Thus, the purpose of this work was the optimization of the performance of LSC panels for BIPV applications. Being an application-oriented study, we paid particular attention to the scalability of the assembling process and the use of LSC slabs functionalized only with widely available organic commercial dyes and high-performance commercial silicon solar cells. The electrical and optical performance of the LSC panels were firstly simulated and then, once the most promising configurations were identified, the respective prototypes were assembled to compare the simulation results with the experimental measurements. These analyses were performed both under uniform illumination and in some relevant shading configurations typical for BIPV devices in operating conditions. The obtained results show that LSC panels that employ PV cells coupled with reflective films can yield a higher efficiency than a traditional system with cells placed along four sides.

Suggested Citation

  • Paolo Bernardoni & Giulio Mangherini & Marinela Gjestila & Alfredo Andreoli & Donato Vincenzi, 2021. "Performance Optimization of Luminescent Solar Concentrators under Several Shading Conditions," Energies, MDPI, vol. 14(4), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:816-:d:493034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/816/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/816/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kanellis, Michalis & de Jong, Minne M. & Slooff, Lenneke & Debije, Michael G., 2017. "The solar noise barrier project: 1. Effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier," Renewable Energy, Elsevier, vol. 103(C), pages 647-652.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giulio Mangherini & Paolo Bernardoni & Eleonora Baccega & Alfredo Andreoli & Valentina Diolaiti & Donato Vincenzi, 2023. "Design of a Ventilated Façade Integrating a Luminescent Solar Concentrator Photovoltaic Panel," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    2. Muhammad Rafiq & Shumaila Naz & José Moleiro Martins & Mário Nuno Mata & Pedro Neves Mata & Saif Maqbool, 2021. "A Study on Emerging Management Practices of Renewable Energy Companies after the Outbreak of Covid-19: Using an Interpretive Structural Modeling (ISM) Approach," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    3. Nima Talebzadeh & Paul G. O’Brien, 2021. "Elliptic Array Luminescent Solar Concentrators for Combined Power Generation and Microalgae Growth," Energies, MDPI, vol. 14(17), pages 1-20, August.
    4. Giulio Mangherini & Valentina Diolaiti & Paolo Bernardoni & Alfredo Andreoli & Donato Vincenzi, 2023. "Review of Façade Photovoltaic Solutions for Less Energy-Hungry Buildings," Energies, MDPI, vol. 16(19), pages 1-35, September.
    5. Cavazzuti, Marco & Bottarelli, Michele, 2023. "Performance analysis of a multi-source renewable energy system for temperature control in buildings of varied thermal transmittance and climate zone," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    2. Zhang, Kai & Wang, Dajiang & Chen, Min & Zhu, Rui & Zhang, Fan & Zhong, Teng & Qian, Zhen & Wang, Yazhou & Li, Hengyue & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2024. "Power generation assessment of photovoltaic noise barriers across 52 major Chinese cities," Applied Energy, Elsevier, vol. 361(C).
    3. Bartłomiej Milewicz & Magdalena Bogacka & Krzysztof Pikoń, 2021. "Influence of Solar Concentrator in the Form of Luminescent PMMA on the Performance of a Silicon Cell," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    4. Debije, Michael G. & Tzikas, Chris & Rajkumar, Vikram A. & de Jong, Minne M., 2017. "The solar noise barrier project: 2. The effect of street art on performance of a large scale luminescent solar concentrator prototype," Renewable Energy, Elsevier, vol. 113(C), pages 1288-1292.
    5. Li, Yilin & Sun, Yujian & Zhang, Yongcao, 2020. "Regional measurements to analyze large-area luminescent solar concentrators," Renewable Energy, Elsevier, vol. 160(C), pages 127-135.
    6. Bognár, Ádám & Kusnadi, Suryadi & Slooff, Lenneke H. & Tzikas, Chris & Loonen, Roel C.G.M. & de Jong, Minne M. & Hensen, Jan L.M. & Debije, Michael G., 2020. "The solar noise barrier project 4: Modeling of full-scale luminescent solar concentrator noise barrier panels," Renewable Energy, Elsevier, vol. 151(C), pages 1141-1149.
    7. Zhong, Teng & Zhang, Kai & Chen, Min & Wang, Yijie & Zhu, Rui & Zhang, Zhixin & Zhou, Zixuan & Qian, Zhen & Lv, Guonian & Yan, Jinyue, 2021. "Assessment of solar photovoltaic potentials on urban noise barriers using street-view imagery," Renewable Energy, Elsevier, vol. 168(C), pages 181-194.
    8. Ana R. Frias & Marita A. Cardoso & Ana R. N. Bastos & Sandra F. H. Correia & Paulo S. André & Luís D. Carlos & Veronica de Zea Bermudez & Rute A. S. Ferreira, 2019. "Transparent Luminescent Solar Concentrators Using Ln 3+ -Based Ionosilicas Towards Photovoltaic Windows," Energies, MDPI, vol. 12(3), pages 1-11, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:816-:d:493034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.