IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p451-d202276.html
   My bibliography  Save this article

Transparent Luminescent Solar Concentrators Using Ln 3+ -Based Ionosilicas Towards Photovoltaic Windows

Author

Listed:
  • Ana R. Frias

    (Department of Physics and CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
    Instituto de Telecomunicações, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Marita A. Cardoso

    (Department of Physics and CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
    Department of Chemistry and CQ-VR, University of Traś-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal)

  • Ana R. N. Bastos

    (Department of Physics and CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Sandra F. H. Correia

    (Department of Physics and CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Paulo S. André

    (Department of Electric and Computer Engineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal)

  • Luís D. Carlos

    (Department of Physics and CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Veronica de Zea Bermudez

    (Department of Chemistry and CQ-VR, University of Traś-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal)

  • Rute A. S. Ferreira

    (Department of Physics and CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal)

Abstract

The integration of photovoltaic (PV) elements in urban environments is gaining visibility due to the current interest in developing energetically self-sustainable buildings. Luminescent solar concentrators (LSCs) may be seen as a solution to convert urban elements, such as façades and windows, into energy-generation units for zero-energy buildings. Moreover, LSCs are able to reduce the mismatch between the AM1.5G spectrum and the PV cells absorption. In this work, we report optically active coatings for LSCs based on lanthanide ions (Ln 3+ = Eu 3+ , Tb 3+ )-doped surface functionalized ionosilicas (ISs) embedded in poly(methyl methacrylate) (PMMA). These new visible-emitting films exhibit large Stokes-shift, enabling the production of transparent coatings with negligible self-absorption and large molar extinction coefficient and brightness values (~2 × 10 5 and ~10 4 M −1 ∙cm −1 , respectively) analogous to that of orange/red-emitting organic dyes. LSCs showed great potential for efficient and environmentally resistant devices, with optical conversion efficiency values of ~0.27% and ~0.34%, respectively.

Suggested Citation

  • Ana R. Frias & Marita A. Cardoso & Ana R. N. Bastos & Sandra F. H. Correia & Paulo S. André & Luís D. Carlos & Veronica de Zea Bermudez & Rute A. S. Ferreira, 2019. "Transparent Luminescent Solar Concentrators Using Ln 3+ -Based Ionosilicas Towards Photovoltaic Windows," Energies, MDPI, vol. 12(3), pages 1-11, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:451-:d:202276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/451/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/451/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kanellis, Michalis & de Jong, Minne M. & Slooff, Lenneke & Debije, Michael G., 2017. "The solar noise barrier project: 1. Effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier," Renewable Energy, Elsevier, vol. 103(C), pages 647-652.
    2. Debije, Michael G. & Tzikas, Chris & de Jong, Minne M. & Kanellis, Michalis & Slooff, Lenneke H., 2018. "The solar noise barrier project: 3. The effects of seasonal spectral variation, cloud cover and heat distribution on the performance of full-scale luminescent solar concentrator panels," Renewable Energy, Elsevier, vol. 116(PA), pages 335-343.
    3. Debije, Michael G. & Tzikas, Chris & Rajkumar, Vikram A. & de Jong, Minne M., 2017. "The solar noise barrier project: 2. The effect of street art on performance of a large scale luminescent solar concentrator prototype," Renewable Energy, Elsevier, vol. 113(C), pages 1288-1292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yilin & Sun, Yujian & Zhang, Yongcao, 2020. "Regional measurements to analyze large-area luminescent solar concentrators," Renewable Energy, Elsevier, vol. 160(C), pages 127-135.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartłomiej Milewicz & Magdalena Bogacka & Krzysztof Pikoń, 2021. "Influence of Solar Concentrator in the Form of Luminescent PMMA on the Performance of a Silicon Cell," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    2. Zhang, Kai & Wang, Dajiang & Chen, Min & Zhu, Rui & Zhang, Fan & Zhong, Teng & Qian, Zhen & Wang, Yazhou & Li, Hengyue & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2024. "Power generation assessment of photovoltaic noise barriers across 52 major Chinese cities," Applied Energy, Elsevier, vol. 361(C).
    3. Li, Yilin & Sun, Yujian & Zhang, Yongcao, 2020. "Regional measurements to analyze large-area luminescent solar concentrators," Renewable Energy, Elsevier, vol. 160(C), pages 127-135.
    4. Bognár, Ádám & Kusnadi, Suryadi & Slooff, Lenneke H. & Tzikas, Chris & Loonen, Roel C.G.M. & de Jong, Minne M. & Hensen, Jan L.M. & Debije, Michael G., 2020. "The solar noise barrier project 4: Modeling of full-scale luminescent solar concentrator noise barrier panels," Renewable Energy, Elsevier, vol. 151(C), pages 1141-1149.
    5. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    6. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2020. "Field Analysis of three different silicon-based Technologies in Composite Climate Condition – Part II – Seasonal assessment and performance degradation rates using statistical tools," Renewable Energy, Elsevier, vol. 147(P1), pages 2102-2117.
    7. Bey, M. & Hamidat, A. & Nacer, T., 2021. "Eco-energetic feasibility study of using grid-connected photovoltaic system in wastewater treatment plant," Energy, Elsevier, vol. 216(C).
    8. Debije, Michael G. & Tzikas, Chris & Rajkumar, Vikram A. & de Jong, Minne M., 2017. "The solar noise barrier project: 2. The effect of street art on performance of a large scale luminescent solar concentrator prototype," Renewable Energy, Elsevier, vol. 113(C), pages 1288-1292.
    9. Paolo Bernardoni & Giulio Mangherini & Marinela Gjestila & Alfredo Andreoli & Donato Vincenzi, 2021. "Performance Optimization of Luminescent Solar Concentrators under Several Shading Conditions," Energies, MDPI, vol. 14(4), pages 1-22, February.
    10. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2018. "An assessment of series resistance estimation techniques for different silicon based SPV modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 199-216.
    11. Zhong, Teng & Zhang, Kai & Chen, Min & Wang, Yijie & Zhu, Rui & Zhang, Zhixin & Zhou, Zixuan & Qian, Zhen & Lv, Guonian & Yan, Jinyue, 2021. "Assessment of solar photovoltaic potentials on urban noise barriers using street-view imagery," Renewable Energy, Elsevier, vol. 168(C), pages 181-194.
    12. Debije, Michael G. & Tzikas, Chris & de Jong, Minne M. & Kanellis, Michalis & Slooff, Lenneke H., 2018. "The solar noise barrier project: 3. The effects of seasonal spectral variation, cloud cover and heat distribution on the performance of full-scale luminescent solar concentrator panels," Renewable Energy, Elsevier, vol. 116(PA), pages 335-343.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:451-:d:202276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.