IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1207-d504416.html
   My bibliography  Save this article

Longitudinal Dynamics Simulation Tool for Hybrid APU and Full Electric Vehicle

Author

Listed:
  • Giulia Sandrini

    (Department of Mechanical and Industrial Engineering, University of Brescia, I-25123 Brescia, Italy)

  • Marco Gadola

    (Department of Mechanical and Industrial Engineering, University of Brescia, I-25123 Brescia, Italy)

  • Daniel Chindamo

    (Department of Mechanical and Industrial Engineering, University of Brescia, I-25123 Brescia, Italy)

Abstract

Due to problems related to environmental pollution and fossil fuels consumption that have not infinite availability, the automotive sector is increasingly moving towards electric powertrains. The most limiting aspect of this category of vehicles is certainly the battery pack, regarding the difficulty in obtaining high range with good performance and low weights. The aim of this work is to provide a simulation tool, which allows for the analysis of the performance of different types of electric and hybrid powertrains, concerning both mechanical and electrical aspects. Through this model it is possible to test different vehicle configurations before prototype realization or to investigate the impact that subsystems’ modifications may have on a vehicle under development. This will allow to speed-up the model-based design process typical for fully electric and hybrid vehicles. The model aims to be at the same time complete but simple enough to lower the simulation time and computational burden so that it can be used in real-time applications, such as driving simulators. All this reduces the time and costs of vehicle design. Validation is also provided, based on a real vehicle and comparison with another consolidated simulation tool. Maximum error on mechanical quantities is proved to be within 5% while on electrical quantities it is always lower than 10%.

Suggested Citation

  • Giulia Sandrini & Marco Gadola & Daniel Chindamo, 2021. "Longitudinal Dynamics Simulation Tool for Hybrid APU and Full Electric Vehicle," Energies, MDPI, vol. 14(4), pages 1-35, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1207-:d:504416
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1207/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1207/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Wei & Chen, Yaoqi & Zhai, Haoran & Zhang, Weigang, 2021. "Predictive energy management for a plug-in hybrid electric vehicle using driving profile segmentation and energy-based analytical SoC planning," Energy, Elsevier, vol. 220(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giulia Sandrini & Daniel Chindamo & Marco Gadola, 2022. "Regenerative Braking Logic That Maximizes Energy Recovery Ensuring the Vehicle Stability," Energies, MDPI, vol. 15(16), pages 1-43, August.
    2. Laura Zecchi & Giulia Sandrini & Marco Gadola & Daniel Chindamo, 2022. "Modeling of a Hybrid Fuel Cell Powertrain with Power Split Logic for Onboard Energy Management Using a Longitudinal Dynamics Simulation Tool," Energies, MDPI, vol. 15(17), pages 1-18, August.
    3. Giulia Sandrini & Marco Gadola & Daniel Chindamo & Andrea Candela & Paolo Magri, 2023. "Exploring the Impact of Vehicle Lightweighting in Terms of Energy Consumption: Analysis and Simulation," Energies, MDPI, vol. 16(13), pages 1-31, July.
    4. Giulia Sandrini & Marco Gadola & Daniel Chindamo & Laura Zecchi, 2023. "Model of a Hybrid Electric Vehicle Equipped with Solid Oxide Fuel Cells Powered by Biomethane," Energies, MDPI, vol. 16(13), pages 1-23, June.
    5. Alberto Broatch & Pablo Olmeda & Pau Bares & Sebastián Aceros, 2022. "Integral Thermal Management Studies in Winter Conditions with a Global Model of a Battery-Powered Electric Bus," Energies, MDPI, vol. 16(1), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Xiaokai & Yan, Xianguo & Chen, Zhi & Meng, Zhiyu, 2022. "Research on energy management strategy of heavy-duty fuel cell hybrid vehicles based on dueling-double-deep Q-network," Energy, Elsevier, vol. 260(C).
    2. Zhou, Wei & Cai, Xuan & Chen, Yaoqi & Li, Junqiu & Peng, Xiaoyan, 2022. "Decoding the optimal charge depletion behavior in energy domain for predictive energy management of series plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 316(C).
    3. Wei, Hongqian & Ai, Qiang & Zhao, Wenqiang & Zhang, Youtong, 2022. "Modelling and experimental validation of an EV torque distribution strategy towards active safety and energy efficiency," Energy, Elsevier, vol. 239(PA).
    4. Wei, Xiaodong & Wang, Jiaqi & Sun, Chao & Liu, Bo & Huo, Weiwei & Sun, Fengchun, 2023. "Guided control for plug-in fuel cell hybrid electric vehicles via vehicle to traffic communication," Energy, Elsevier, vol. 267(C).
    5. Shojaabadi, Saeed & Talavat, Vahid & Galvani, Sadjad, 2022. "A game theory-based price bidding strategy for electric vehicle aggregators in the presence of wind power producers," Renewable Energy, Elsevier, vol. 193(C), pages 407-417.
    6. Ma, Wentao & Guo, Peng & Wang, Xiaofei & Zhang, Zhiyu & Peng, Siyuan & Chen, Badong, 2022. "Robust state of charge estimation for Li-ion batteries based on cubature kalman filter with generalized maximum correntropy criterion," Energy, Elsevier, vol. 260(C).
    7. Zhang, Hao & Fan, Qinhao & Liu, Shang & Li, Shengbo Eben & Huang, Jin & Wang, Zhi, 2021. "Hierarchical energy management strategy for plug-in hybrid electric powertrain integrated with dual-mode combustion engine," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1207-:d:504416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.