IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1079-d501531.html
   My bibliography  Save this article

An Improved Variational Mode Decomposition and Its Application on Fault Feature Extraction of Rolling Element Bearing

Author

Listed:
  • Guoping An

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
    Center of Safety Technology, National Railway Administration, Beijing 100166, China)

  • Qingbin Tong

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Yanan Zhang

    (State Grid JIBEI Electric Power Co., Ltd. Maintenance Branch State Grid, Beijing 102488, China)

  • Ruifang Liu

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Weili Li

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Junci Cao

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Yuyi Lin

    (Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA)

Abstract

The fault diagnosis of rolling element bearing is of great significance to avoid serious accidents and huge economic losses. However, the characteristics of the nonlinear, non-stationary vibration signals make the fault feature extraction of signal become a challenging work. This paper proposes an improved variational mode decomposition (IVMD) algorithm for the fault feature extraction of rolling bearing, which has the advantages of extracting the optimal fault feature from the decomposed mode and overcoming the noise interference. The Shuffled Frog Leap Algorithm (SFLA) is employed in the optimal adaptive selection of mode number K and bandwidth control parameter α. A multi-objective evaluation function, which is based on the envelope entropy, kurtosis and correlation coefficients, is constructed to select the optimal mode component. The efficiency coefficient method (ECM) is utilized to transform the multi-objective optimization problem into a single-objective optimization problem. The envelope spectrum technique is used to analyze the signals reconstructed by the optimal mode components. The proposed IVMD method is evaluated by simulation and practical bearing vibration signals under different conditions. The results show that the proposed method can improve the decomposition accuracy of the signal and the adaptability of the influence parameters and realize the effective extraction of the bearing vibration signal.

Suggested Citation

  • Guoping An & Qingbin Tong & Yanan Zhang & Ruifang Liu & Weili Li & Junci Cao & Yuyi Lin, 2021. "An Improved Variational Mode Decomposition and Its Application on Fault Feature Extraction of Rolling Element Bearing," Energies, MDPI, vol. 14(4), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1079-:d:501531
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1079/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1079/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cong Wang & Meng Gan & Chang’an Zhu, 2018. "Fault feature extraction of rolling element bearings based on wavelet packet transform and sparse representation theory," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 937-951, April.
    2. Wentao Huang & Fanzhao Kong & Xuezeng Zhao, 2018. "Spur bevel gearbox fault diagnosis using wavelet packet transform and rough set theory," Journal of Intelligent Manufacturing, Springer, vol. 29(6), pages 1257-1271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenen Li & Xinyan Zhang & Tusongjiang Kari & Wei Hu, 2021. "Health Assessment and Remaining Useful Life Prediction of Wind Turbine High-Speed Shaft Bearings," Energies, MDPI, vol. 14(15), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubén Medina & Jean Carlo Macancela & Pablo Lucero & Diego Cabrera & René-Vinicio Sánchez & Mariela Cerrada, 2022. "Gear and bearing fault classification under different load and speed by using Poincaré plot features and SVM," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1031-1055, April.
    2. Yiping Gao & Liang Gao & Xinyu Li & Yuwei Zheng, 2020. "A zero-shot learning method for fault diagnosis under unknown working loads," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 899-909, April.
    3. Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
    4. Xuejun Zhao & Yong Qin & Changbo He & Limin Jia, 2022. "Underdetermined blind source extraction of early vehicle bearing faults based on EMD and kernelized correlation maximization," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 185-201, January.
    5. Xiaohan Chen & Beike Zhang & Dong Gao, 2021. "Bearing fault diagnosis base on multi-scale CNN and LSTM model," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 971-987, April.
    6. Guo, Sheng & Yang, Tao & Hua, Haochen & Cao, Junwei, 2021. "Coupling fault diagnosis of wind turbine gearbox based on multitask parallel convolutional neural networks with overall information," Renewable Energy, Elsevier, vol. 178(C), pages 639-650.
    7. Xiaoyin Nie & Gang Xie, 2021. "A novel normalized recurrent neural network for fault diagnosis with noisy labels," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1271-1288, June.
    8. Xiao Yang & Fengrong Bi & Yabing Jing & Xin Li & Guichang Zhang, 2022. "A Condition-Monitoring Approach for Diesel Engines Based on an Adaptive VMD and Sparse Representation Theory," Energies, MDPI, vol. 15(9), pages 1-20, May.
    9. Wei Zhang & Hong Lu & Yongquan Zhang & Zhangjie Li & Yongjing Wang & Jun Zhou & Jiangnuo Mei & Yuzhan Wei, 2022. "A Fault Diagnosis Scheme for Gearbox Based on Improved Entropy and Optimized Regularized Extreme Learning Machine," Mathematics, MDPI, vol. 10(23), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1079-:d:501531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.