IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1039-d500326.html
   My bibliography  Save this article

The Influence of Geometric Parameters of Pump Installation on the Hydraulic Performance of a Prefabricated Pumping Station

Author

Listed:
  • Bowen Zhang

    (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China)

  • Li Cheng

    (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China)

  • Chunlei Xu

    (Key Water Conservancy Project Management Office, Wuxi 214000, China)

  • Mo Wang

    (Anhui Branch of Hainan Water Resources and Hydropower Survey and Design Institute, Hefei 225000, China)

Abstract

A prefabricated pumping station is a new type of pumping station that plays an important role in the construction of sponge cities in developing countries. It solves the problem of urban water-logging and makes great contributions to the sustainable development of water resources. In order to research the influence of different installation positions of pumps on the internal hydraulic performance of a prefabricated pumping station, based on ANSYS software, the computational fluid dynamics (CFD) numerical simulation method was used to analyze the internal flow state of the prefabricated pump station. In this research, the optimal geometric parameters of pump installation in a prefabricated pumping station are given. The results show that when the distance between the connecting line of two pumps and the center of the sump is L = 0.2 R , the distance between the two pumps is S = 0.6 R , and the suspension height of the two pumps is H = 0.6 D , the internal flow pattern of the prefabricated pump station is better. ( R is the cross-sectional radius of the sump and D is the diameter of the nozzle of the pump horn.) These research results have certain guiding significance for improvement of the hydraulic performance and operation efficiency of prefabricated pump stations. They also provide a theoretical basis for parameter selection for prefabricated pumping stations.

Suggested Citation

  • Bowen Zhang & Li Cheng & Chunlei Xu & Mo Wang, 2021. "The Influence of Geometric Parameters of Pump Installation on the Hydraulic Performance of a Prefabricated Pumping Station," Energies, MDPI, vol. 14(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1039-:d:500326
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1039/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1039/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weixuan Jiao & Di Zhang & Chuan Wang & Li Cheng & Tao Wang, 2020. "Unsteady Numerical Calculation of Oblique Submerged Jet," Energies, MDPI, vol. 13(18), pages 1-13, September.
    2. Zhang, Di & Jiao, Weixuan & Cheng, Li & Xia, Chenzhi & Zhang, Bowen & Luo, Can & Wang, Chuan, 2021. "Experimental study on the evolution process of the roof-attached vortex of the closed sump," Renewable Energy, Elsevier, vol. 164(C), pages 1029-1038.
    3. Xiaoke He & Yingchong Zhang & Chuan Wang & Congcong Zhang & Li Cheng & Kun Chen & Bo Hu, 2020. "Influence of Critical Wall Roughness on the Performance of Double-Channel Sewage Pump," Energies, MDPI, vol. 13(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weixuan Jiao & Di Zhang & Chuan Wang & Li Cheng & Tao Wang, 2020. "Unsteady Numerical Calculation of Oblique Submerged Jet," Energies, MDPI, vol. 13(18), pages 1-13, September.
    2. Zhang, Bowen & Cheng, Li & Jiao, Weixuan & Zhang, Di, 2023. "Experimental and statistical analysis of the flap gate energy loss and pressure fluctuation spatiotemporal characteristics of a mixed-flow pump device," Energy, Elsevier, vol. 272(C).
    3. Lijian Shi & Jun Zhu & Fangping Tang & Chuan Wang, 2020. "Multi-Disciplinary Optimization Design of Axial-Flow Pump Impellers Based on the Approximation Model," Energies, MDPI, vol. 13(4), pages 1-19, February.
    4. Wan Zhang & Ruihao Shen & Ning Xu & Haoran Zhang & Yongtu Liang, 2020. "Study on Optimization of Active Control Schemes for Considering Transient Processes in the Case of Pipeline Leakage," Energies, MDPI, vol. 13(7), pages 1-16, April.
    5. Yaguang Heng & Bo Hu & Qifeng Jiang & Zhengwei Wang & Xiaobing Liu, 2020. "Stall Mode Transformation in the Wide Vaneless Diffuser of Centrifugal Compressors," Energies, MDPI, vol. 13(22), pages 1-14, November.
    6. Hongliang Wang & Bing Long & Chuan Wang & Chen Han & Linjian Li, 2020. "Effects of the Impeller Blade with a Slot Structure on the Centrifugal Pump Performance," Energies, MDPI, vol. 13(7), pages 1-17, April.
    7. Zhang, Di & Jiao, Weixuan & Cheng, Li & Xia, Chenzhi & Zhang, Bowen & Luo, Can & Wang, Chuan, 2021. "Experimental study on the evolution process of the roof-attached vortex of the closed sump," Renewable Energy, Elsevier, vol. 164(C), pages 1029-1038.
    8. Kan Kan & Qingying Zhang & Yuan Zheng & Hui Xu & Zhe Xu & Jianwei Zhai & Alexis Muhirwa, 2022. "Investigation into Influence of Wall Roughness on the Hydraulic Characteristics of an Axial Flow Pump as Turbine," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    9. Jiaxing Lu & Xiaobing Liu & Yongzhong Zeng & Baoshan Zhu & Bo Hu & Hong Hua, 2020. "Investigation of the Noise Induced by Unstable Flow in a Centrifugal Pump," Energies, MDPI, vol. 13(3), pages 1-22, January.
    10. Shuihua Zheng & Chaojie Yang & Chaoshou Yan & Min Chai & Zenan Sun, 2022. "Study on Fiber Clogging Mechanism in Sewage Pump Based on CFD–DEM Simulation," Energies, MDPI, vol. 15(5), pages 1-19, February.
    11. Hongliang Wang & Zhongdong Qian & Di Zhang & Tao Wang & Chuan Wang, 2020. "Numerical Study of the Normal Impinging Water Jet at Different Impinging Height, Based on Wray–Agarwal Turbulence Model," Energies, MDPI, vol. 13(7), pages 1-15, April.
    12. Li, Lin & Tan, Dapeng & Yin, Zichao & Wang, Tong & Fan, Xinghua & Wang, Ronghui, 2021. "Investigation on the multiphase vortex and its fluid-solid vibration characters for sustainability production," Renewable Energy, Elsevier, vol. 175(C), pages 887-909.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1039-:d:500326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.