IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1015-d499807.html
   My bibliography  Save this article

Torque Ripple Suppression of PMSM Based on Robust Two Degrees-of-Freedom Resonant Controller

Author

Listed:
  • Mingfei Huang

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yongting Deng

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

  • Hongwen Li

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

  • Jing Liu

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

  • Meng Shao

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

  • Qiang Fei

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

Abstract

This paper concentrates on a robust resonant control strategy of a permanent magnet synchronous motor (PMSM) for electric drivers with model uncertainties and external disturbances to improve the control performance of the current loop. Firstly, to reduce the torque ripple of PMSM, the resonant controller with fractional order (FO) calculus is introduced. Then, a robust two degrees-of-freedom (Robust-TDOF) control strategy was designed based on the modified resonant controller. Finally, by combining the two control methods, this study proposes an enhanced Robust-TDOF regulation method, named as the robust two degrees-of-freedom resonant controller (Robust-TDOFR), to guarantee the robustness of model uncertainty and to further improve the performance with minimized periodic torque ripples. Meanwhile, a tuning method was constructed followed by stability and robust stability analysis. Furthermore, the proposed Robust-TDOFR control method was applied in the current loop of a PMSM to suppress the periodic current harmonics caused by non-ideal factors of inverter and current measurement errors. Finally, simulations and experiments were performed to validate our control strategy. The simulation and experimental results showed that the THDs (total harmonic distortion) of phase current decreased to a level of 0.69% and 5.79% in the two testing environments.

Suggested Citation

  • Mingfei Huang & Yongting Deng & Hongwen Li & Jing Liu & Meng Shao & Qiang Fei, 2021. "Torque Ripple Suppression of PMSM Based on Robust Two Degrees-of-Freedom Resonant Controller," Energies, MDPI, vol. 14(4), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1015-:d:499807
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Irfan Sami & Shafaat Ullah & Zahoor Ali & Nasim Ullah & Jong-Suk Ro, 2020. "A Super Twisting Fractional Order Terminal Sliding Mode Control for DFIG-Based Wind Energy Conversion System," Energies, MDPI, vol. 13(9), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belkhier, Youcef & Achour, Abdelyazid & Ullah, Nasim & Shaw, Rabindra Nath & Chowdhury, Shahariar & Techato, Kuaanan, 2022. "Energy-based fuzzy supervisory non integer control for performance improvement of PMSG-Based marine energy system under swell effect and parameter uncertainties," Renewable Energy, Elsevier, vol. 186(C), pages 457-468.
    2. Luigi Fortuna & Arturo Buscarino, 2022. "Sustainable Energy Systems," Energies, MDPI, vol. 15(23), pages 1-7, December.
    3. Pradeep Singh & Krishan Arora & Umesh C. Rathore & Eunmok Yang & Gyanendra Prasad Joshi & Kwang Chul Son, 2023. "Performance Evaluation of Grid-Connected DFIG-Based WECS with Battery Energy Storage System under Wind Alterations Using FOPID Controller for RSC," Mathematics, MDPI, vol. 11(9), pages 1-29, April.
    4. Pawel Latosinski & Andrzej Bartoszewicz, 2023. "Sliding Mode Controllers in Energy Systems and Other Applications," Energies, MDPI, vol. 16(3), pages 1-4, January.
    5. Yashar Mousavi & Geraint Bevan & Ibrahim Beklan Küçükdemiral & Afef Fekih, 2021. "Maximum Power Extraction from Wind Turbines Using a Fault-Tolerant Fractional-Order Nonsingular Terminal Sliding Mode Controller," Energies, MDPI, vol. 14(18), pages 1-16, September.
    6. Habib Benbouhenni & Nicu Bizon, 2021. "Third-Order Sliding Mode Applied to the Direct Field-Oriented Control of the Asynchronous Generator for Variable-Speed Contra-Rotating Wind Turbine Generation Systems," Energies, MDPI, vol. 14(18), pages 1-20, September.
    7. Naamane Debdouche & Brahim Deffaf & Habib Benbouhenni & Zarour Laid & Mohamed I. Mosaad, 2023. "Direct Power Control for Three-Level Multifunctional Voltage Source Inverter of PV Systems Using a Simplified Super-Twisting Algorithm," Energies, MDPI, vol. 16(10), pages 1-32, May.
    8. Peng Gao & Guangming Zhang & Xiaodong Lv, 2021. "Model-Free Control Using Improved Smoothing Extended State Observer and Super-Twisting Nonlinear Sliding Mode Control for PMSM Drives," Energies, MDPI, vol. 14(4), pages 1-15, February.
    9. Habib Benbouhenni & Zinelaabidine Boudjema & Nicu Bizon & Phatiphat Thounthong & Noureddine Takorabet, 2022. "Direct Power Control Based on Modified Sliding Mode Controller for a Variable-Speed Multi-Rotor Wind Turbine System Using PWM Strategy," Energies, MDPI, vol. 15(10), pages 1-25, May.
    10. Kai Ni & Haochen Shi & Jin Zhang & Chong Zhang & Hongzhe Wang & Yizhou Sun, 2023. "Parameter Robustness Enhanced Deadbeat Control for DFIG with ESO-Based Disturbance Estimation," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
    11. Yaozhen Han & Shuzhen Li & Cuiqi Du, 2020. "Adaptive Higher-Order Sliding Mode Control of Series-Compensated DFIG-Based Wind Farm for Sub-Synchronous Control Interaction Mitigation," Energies, MDPI, vol. 13(20), pages 1-21, October.
    12. Habib Benbouhenni & Nicu Bizon, 2021. "Advanced Direct Vector Control Method for Optimizing the Operation of a Double-Powered Induction Generator-Based Dual-Rotor Wind Turbine System," Mathematics, MDPI, vol. 9(19), pages 1-36, September.
    13. Minghao Zhou & Hongyu Su & Yi Liu & William Cai & Wei Xu & Dong Wang, 2021. "Full-Order Terminal Sliding-Mode Control of Brushless Doubly Fed Induction Generator for Ship Microgrids," Energies, MDPI, vol. 14(21), pages 1-20, November.
    14. Muhammad Maaruf & Md Shafiullah & Ali T. Al-Awami & Fahad S. Al-Ismail, 2021. "Adaptive Nonsingular Fast Terminal Sliding Mode Control for Maximum Power Point Tracking of a WECS-PMSG," Sustainability, MDPI, vol. 13(23), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1015-:d:499807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.