IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p773-d491400.html
   My bibliography  Save this article

Evaluating the Potential Benefit of Using Nowcasting Systems to Improve the Yield of Parabolic Trough Power Plants with Single-Phase HTF

Author

Listed:
  • Kareem Noureldin

    (German Aerospace Center (DLR), Institute of Solar Research, Wankelstrasse 5, 70563 Stuttgart, Germany)

  • Tobias Hirsch

    (German Aerospace Center (DLR), Institute of Solar Research, Wankelstrasse 5, 70563 Stuttgart, Germany)

  • Bijan Nouri

    (German Aerospace Center (DLR), Institute of Solar Research, Carretera de Senés s/n, km 5, 04200 Tabernas, Spain)

  • Zeyad Yasser

    (TSK Flagsol Engineering GmbH, Anna-Schneider-Steig 10, 50678 Cologne, Germany)

  • Robert Pitz-Paal

    (German Aerospace Center (DLR), Institute of Solar Research, Linder Höhe, 51147 Cologne, Germany)

Abstract

Solar field developers include innovative solutions to optimize the energy production of their plants. Simulation tools play a significant role in the design and testing phases as they provide estimations of this yield in different conditions. Transient processes, like passing clouds and solar field start-up, are specifically challenging to optimize and estimate using such simulation tools. Solar fields are subject to high degree of both temporal and spatial variability in the energy input and a detailed estimation can be achieved by simulating subsystems within acceptable time and computational power. Hence, such simulation tools cannot be utilized for tests under realistic operation conditions. The Virtual Solar Field is a computationally efficient simulation tool that allows a detailed transient simulation of parabolic trough solar fields based on single-phase fluids. Using this tool, developers could reproduce a transient test case with exactly the same disturbances to provide fair comparisons between different configurations. In this paper, an evaluation process based on numerical simulations using the Virtual Solar Field is presented. The economic benefit of novel innovative control concepts can be assessed according to the presented scheme. This is demonstrated by evaluating the potential benefit of availability of spatial DNI nowcasts on the control of parabolic trough solar fields. Results show that nowcasting can increase the economic revenue of commercial power plants by up to 2.5% per day. This proves the feasibility of installing such systems.

Suggested Citation

  • Kareem Noureldin & Tobias Hirsch & Bijan Nouri & Zeyad Yasser & Robert Pitz-Paal, 2021. "Evaluating the Potential Benefit of Using Nowcasting Systems to Improve the Yield of Parabolic Trough Power Plants with Single-Phase HTF," Energies, MDPI, vol. 14(3), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:773-:d:491400
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lourdes A. Barcia & Rogelio Peón Menéndez & Juan Á. Martínez Esteban & Miguel A. José Prieto & Juan A. Martín Ramos & F. Javier De Cos Juez & Antonio Nevado Reviriego, 2015. "Dynamic Modeling of the Solar Field in Parabolic Trough Solar Power Plants," Energies, MDPI, vol. 8(12), pages 1-17, November.
    2. Robert Pitz-Paal, 2017. "Concentrating solar power: Still small but learning fast," Nature Energy, Nature, vol. 2(7), pages 1-2, July.
    3. Lilliestam, Johan & Barradi, Touria & Caldés, Natalia & Gomez, Marta & Hanger, Susanne & Kern, Jürgen & Komendantova, Nadejda & Mehos, Mark & Hong, Wai Mun & Wang, Zhifeng & Patt, Anthony, 2018. "Policies to keep and expand the option of concentrating solar power for dispatchable renewable electricity," Energy Policy, Elsevier, vol. 116(C), pages 193-197.
    4. Padilla, Ricardo Vasquez & Demirkaya, Gokmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2011. "Heat transfer analysis of parabolic trough solar receiver," Applied Energy, Elsevier, vol. 88(12), pages 5097-5110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qiliang & Yao, Yao & Shen, Yongting & Shen, Zhicheng & Yang, Hongxing, 2024. "A mutually beneficial system incorporating parabolic trough concentrating solar power system with photovoltaics: A comprehensive techno-economic analysis," Applied Energy, Elsevier, vol. 360(C).
    2. Wang, Qiliang & Shen, Boxu & Huang, Junchao & Yang, Honglun & Pei, Gang & Yang, Hongxing, 2021. "A spectral self-regulating parabolic trough solar receiver integrated with vanadium dioxide-based thermochromic coating," Applied Energy, Elsevier, vol. 285(C).
    3. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    4. Sripadmanabhan Indira, Sridhar & Aravind Vaithilingam, Chockalingam & Narasingamurthi, Kulasekharan & Sivasubramanian, Ramsundar & Chong, Kok-Keong & Saidur, R., 2022. "Mathematical modelling, performance evaluation and exergy analysis of a hybrid photovoltaic/thermal-solar thermoelectric system integrated with compound parabolic concentrator and parabolic trough con," Applied Energy, Elsevier, vol. 320(C).
    5. Biswas, D.B. & Bose, S. & Dalvi, V.H. & Deshmukh, S.P. & Shenoy, N.V. & Panse, S.V. & Joshi, J.B., 2020. "A techno-economic comparison between piston steam engines as dispatchable power generation systems for renewable energy with concentrated solar harvesting and thermal storage against solar photovoltai," Energy, Elsevier, vol. 213(C).
    6. Wang, Qiliang & Yao, Yao & Shen, Zhicheng & Yang, Hongxing, 2023. "A hybrid parabolic trough solar collector system integrated with photovoltaics," Applied Energy, Elsevier, vol. 329(C).
    7. Wang, Ruilin & Qu, Wanjun & Hong, Hui & Sun, Jie & Jin, Hongguang, 2018. "Experimental performance of 300 kWth prototype of parabolic trough collector with rotatable axis and irreversibility analysis," Energy, Elsevier, vol. 161(C), pages 595-609.
    8. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    9. Cheng, Ze-Dong & He, Ya-Ling & Qiu, Yu, 2015. "A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends," Renewable Energy, Elsevier, vol. 74(C), pages 139-147.
    10. Lu, Jianfeng & Ding, Jing & Yang, Jianping & Yang, Xiaoxi, 2013. "Nonuniform heat transfer model and performance of parabolic trough solar receiver," Energy, Elsevier, vol. 59(C), pages 666-675.
    11. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    12. Haedr Abdalha Mahmood Alsalame & Kang Kyeong Sik & Gwi Hyun Lee, 2024. "Comparative Numerical and Experimental Analyses of Conical Solar Collector and Spot Fresnel Concentrator," Energies, MDPI, vol. 17(21), pages 1-16, October.
    13. Yang, Honglun & Wang, Qiliang & Zhong, Shuai & Kwan, Trevor Hocksun & Feng, Junsheng & Cao, Jingyu & Pei, Gang, 2020. "Spectral-spatial design and coupling analysis of the parabolic trough receiver," Applied Energy, Elsevier, vol. 264(C).
    14. Yang, S. & Sensoy, T.S. & Ordonez, J.C., 2018. "Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization," Applied Energy, Elsevier, vol. 217(C), pages 509-526.
    15. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. Amit K. Bhakta & Nitesh K. Panday & Shailendra N. Singh, 2018. "Performance Study of a Cylindrical Parabolic Concentrating Solar Water Heater with Nail Type Twisted Tape Inserts in the Copper Absorber Tube," Energies, MDPI, vol. 11(1), pages 1-15, January.
    17. Wu, Zhiyong & Li, Shidong & Yuan, Guofeng & Lei, Dongqiang & Wang, Zhifeng, 2014. "Three-dimensional numerical study of heat transfer characteristics of parabolic trough receiver," Applied Energy, Elsevier, vol. 113(C), pages 902-911.
    18. Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Zheng, Wandong & Xia, Junbao, 2018. "Heat transfer analysis of a new volumetric based receiver for parabolic trough solar collector," Energy, Elsevier, vol. 142(C), pages 920-931.
    19. Fasquelle, T. & Falcoz, Q. & Neveu, P. & Lecat, F. & Flamant, G., 2017. "A thermal model to predict the dynamic performances of parabolic trough lines," Energy, Elsevier, vol. 141(C), pages 1187-1203.
    20. Ji, Junping & Tang, Hua & Jin, Peng, 2019. "Economic potential to develop concentrating solar power in China: A provincial assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:773-:d:491400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.