IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p765-d491053.html
   My bibliography  Save this article

Evaluation of Formate Salt PCM’s for Latent Heat Thermal Energy Storage

Author

Listed:
  • Samuel Gage

    (National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA)

  • Prashant Sharan

    (Los Alamos National Laboratory, M711, Los Alamos, NM 87545, USA)

  • Craig Turchi

    (National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA)

  • Judy Netter

    (National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA)

Abstract

This work examines formate salts as potential phase change materials (PCMs) for middle-high temperature (≤250 °C) latent heat thermal energy storage applications. The thermophysical properties of three formate salts were characterized: pure sodium formate and binary blends of sodium/potassium formate and sodium/calcium formate. The stability of formate PCM’s was evaluated by thermal cycling using differential scanning calorimetry where sodium formate and sodium/potassium formate appeared stable over 600 cycles, while sodium/calcium formate exhibited a monotonic decrease in heat of fusion over the test period. A longer test with sodium formate led to gas release and decomposition of the salt. FTIR analysis of the PCM showed degradation of formate to oxalate. T-history experiments with 50-g PCM quantities demonstrated a bulk supercooling of only 2–3 °C for these salts. Thermal conductivity enhancement of over 700% was achieved by embedding aluminum in the solid PCM. Finally, mild carbon steel was immersed in molten sodium formate for up to 2000 h. Sodium formate was found to be non-corrosive, as calculated by mass loss and confirmed by cross-sectional high-resolution microscopy. FTIR analysis of the PCM after 2000 h shows oxidation at the free surface, while the bulk PCM remained unchanged, further indicating a need to protect the formate from atmospheric exposure when used as a PCM.

Suggested Citation

  • Samuel Gage & Prashant Sharan & Craig Turchi & Judy Netter, 2021. "Evaluation of Formate Salt PCM’s for Latent Heat Thermal Energy Storage," Energies, MDPI, vol. 14(3), pages 1-10, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:765-:d:491053
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/765/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/765/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cui, Wenlong & Yuan, Yanping & Sun, Liangliang & Cao, Xiaoling & Yang, Xiaojiao, 2016. "Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials," Renewable Energy, Elsevier, vol. 99(C), pages 1029-1037.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Salvatore Sau & Valerio Tripi & Anna Chiara Tizzoni & Raffaele Liberatore & Emiliana Mansi & Annarita Spadoni & Natale Corsaro & Mauro Capocelli & Tiziano Delise & Anna Della Libera, 2021. "High-Temperature Chloride-Carbonate Phase Change Material: Thermal Performances and Modelling of a Packed Bed Storage System for Concentrating Solar Power Plants," Energies, MDPI, vol. 14(17), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    2. Zhang, Yi & Tao, Wen & Wang, Kehan & Li, Dongxu, 2020. "Analysis of thermal properties of gypsum materials incorporated with microencapsulated phase change materials based on silica," Renewable Energy, Elsevier, vol. 149(C), pages 400-408.
    3. Englmair, Gerald & Moser, Christoph & Furbo, Simon & Dannemand, Mark & Fan, Jianhua, 2018. "Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system," Applied Energy, Elsevier, vol. 221(C), pages 522-534.
    4. Mahdi, Jasim M. & Mohammed, Hayder I. & Hashim, Emad T. & Talebizadehsardari, Pouyan & Nsofor, Emmanuel C., 2020. "Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system," Applied Energy, Elsevier, vol. 257(C).
    5. Grzegorz Czerwiński & Jerzy Wołoszyn, 2022. "Influence of the Longitudinal and Tree-Shaped Fin Parameters on the Shell-and-Tube LHTES Energy Efficiency," Energies, MDPI, vol. 16(1), pages 1-24, December.
    6. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    7. Abdelwaheb Trigui & Makki Abdelmouleh, 2023. "Improving the Heat Transfer of Phase Change Composites for Thermal Energy Storage by Adding Copper: Preparation and Thermal Properties," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    8. Zhao, B.C. & Li, T.X. & Gao, J.C. & Wang, R.Z., 2020. "Latent heat thermal storage using salt hydrates for distributed building heating: A multi-level scale-up research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    9. Shao, Y.L. & Soh, K.Y. & Islam, M.R. & Chua, K.J., 2023. "Thermal, exergy and economic analysis of a cascaded packed-bed tank with multiple phase change materials for district cooling system," Energy, Elsevier, vol. 268(C).
    10. Gong, Shuai & Li, Qiong & Shao, Liqun & Ding, Yuwen & Gao, Wenfeng, 2024. "Performance analysis of V-corrugated flat plate collector containing binary crystal thermal storage materials," Renewable Energy, Elsevier, vol. 221(C).
    11. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Wong-Pinto, Liey-Si & Milian, Yanio & Ushak, Svetlana, 2020. "Progress on use of nanoparticles in salt hydrates as phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    13. Wang, Yan & Yu, Kaixiang & Peng, Hao & Ling, Xiang, 2019. "Preparation and thermal properties of sodium acetate trihydrate as a novel phase change material for energy storage," Energy, Elsevier, vol. 167(C), pages 269-274.
    14. Lv, Laiquan & Zou, Yang & Huang, Shengyao & Wang, Xinyi & Shao, Rongyu & Xue, Xue & Rong, Yan & Zhou, Hao, 2023. "Experimental study on a pilot-scale medium-temperature latent heat storage system with various fins," Renewable Energy, Elsevier, vol. 205(C), pages 499-508.
    15. Yang, Haibin & Bao, Xiaohua & Cui, Hongzhi & Lo, Tommy Y. & Chen, Xiangsheng, 2022. "Optimization of supercooling, thermal conductivity, photothermal conversion, and phase change temperature of sodium acetate trihydrate for thermal energy storage applications," Energy, Elsevier, vol. 254(PA).
    16. Zahir, Md. Hasan & Mohamed, Shamseldin A. & Saidur, R. & Al-Sulaiman, Fahad A., 2019. "Supercooling of phase-change materials and the techniques used to mitigate the phenomenon," Applied Energy, Elsevier, vol. 240(C), pages 793-817.
    17. Yang, Bin & Wang, Ning & Song, Yawei & Liu, Jiemei, 2021. "Study on the improvement of supercooling and thermal properties of erythritol-based phase change energy storage materials," Renewable Energy, Elsevier, vol. 175(C), pages 80-97.
    18. Honcová, Pavla & Sádovská, Galina & Pastvová, Jana & Koštál, Petr & Seidel, Jürgen & Sazama, Petr & Pilař, Radim, 2021. "Improvement of thermal energy accumulation by incorporation of carbon nanomaterial into magnesium chloride hexahydrate and magnesium nitrate hexahydrate," Renewable Energy, Elsevier, vol. 168(C), pages 1015-1026.
    19. Zhou, Yuekuan, 2022. "Demand response flexibility with synergies on passive PCM walls, BIPVs, and active air-conditioning system in a subtropical climate," Renewable Energy, Elsevier, vol. 199(C), pages 204-225.
    20. Lin, Niangzhi & Li, Chuanchang & Zhang, Dongyao & Li, Yaxi & Chen, Jian, 2022. "Emerging phase change cold storage materials derived from sodium sulfate decahydrate," Energy, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:765-:d:491053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.