IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p762-d491029.html
   My bibliography  Save this article

Multi-Objective Load Dispatch Control of Biomass Heat and Power Cogeneration Based on Economic Model Predictive Control

Author

Listed:
  • Lianming Li

    (State Key Lab of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
    Jiaxing New Jies Heat & Power Co., Ltd., Jiaxing 314016, China)

  • Defeng He

    (College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China)

  • Jianrong Jin

    (Jiaxing New Jies Heat & Power Co., Ltd., Jiaxing 314016, China)

  • Baoyun Yu

    (Jiaxing New Jies Heat & Power Co., Ltd., Jiaxing 314016, China)

  • Xiang Gao

    (State Key Lab of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

Abstract

This paper proposes a multi-objective load dispatch algorithm based on economic predictive control to solve the real-time multi-objective load dispatch problem of biomass heat and power cogeneration. According to the energy conservation law and production process, a real-time multi-objective load dispatch optimization model for heat and power units is established. Then, the concept of multi-objective utopia points is introduced, and the multi-objective load comprehensive objective function is defined to coordinate the conflict between the economic performance and pollutant emission performance of the units. Furthermore, using the online receding optimization characteristics of economic predictive control, the comprehensive objective function of multi-objective load dispatching is optimized online. Then, the fuel rate satisfying the economic performance and pollutant emission performance of the units is calculated to realize the economic performance and environmental protection operation of biomass heat and power cogeneration. Finally, the proposed multi-objective load dispatch control method is compared to traditional dispatch strategies by using industrial data. The results show that the method presented here can well balance the production cost and pollutant emission objective under the fluctuation of the thermoelectric load demand, and provides a feasible scheme for real-time dispatching of the multi-objective load dispatch problem of biomass heat and power cogeneration.

Suggested Citation

  • Lianming Li & Defeng He & Jianrong Jin & Baoyun Yu & Xiang Gao, 2021. "Multi-Objective Load Dispatch Control of Biomass Heat and Power Cogeneration Based on Economic Model Predictive Control," Energies, MDPI, vol. 14(3), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:762-:d:491029
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/762/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/762/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi, Bin & Yan, Lie-Xiang & Wu, Wei, 2013. "Multi-objective optimization for combined heat and power economic dispatch with power transmission loss and emission reduction," Energy, Elsevier, vol. 56(C), pages 135-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahenda Sarhan & Abdullah Shaheen & Ragab El-Sehiemy & Mona Gafar, 2022. "A Multi-Objective Teaching–Learning Studying-Based Algorithm for Large-Scale Dispatching of Combined Electrical Power and Heat Energies," Mathematics, MDPI, vol. 10(13), pages 1-26, June.
    2. Yue Cao & Tao Li & Tianyu He & Yuwei Wei & Ming Li & Fengqi Si, 2022. "Multiobjective Load Dispatch for Coal-Fired Power Plants under Renewable-Energy Accommodation Based on a Nondominated-Sorting Grey Wolf Optimizer Algorithm," Energies, MDPI, vol. 15(8), pages 1-19, April.
    3. Ragab El-Sehiemy & Abdullah Shaheen & Ahmed Ginidi & Mostafa Elhosseini, 2022. "A Honey Badger Optimization for Minimizing the Pollutant Environmental Emissions-Based Economic Dispatch Model Integrating Combined Heat and Power Units," Energies, MDPI, vol. 15(20), pages 1-22, October.
    4. Araby Mahdy & Abdullah Shaheen & Ragab El-Sehiemy & Ahmed Ginidi & Saad F. Al-Gahtani, 2023. "Single- and Multi-Objective Optimization Frameworks of Shape Design of Tubular Linear Synchronous Motor," Energies, MDPI, vol. 16(5), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yang & Wang, Jinlong & Zhao, Dongbo & Li, Guoqing & Chen, Chen, 2018. "A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making," Energy, Elsevier, vol. 162(C), pages 237-254.
    2. Jean-Nicolas Louis & Stéphane Allard & Freideriki Kotrotsou & Vincent Debusschere, 2020. "A multi-objective approach to the prospective development of the European power system by 2050," Post-Print hal-02376337, HAL.
    3. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    4. Izadbakhsh, Maziar & Gandomkar, Majid & Rezvani, Alireza & Ahmadi, Abdollah, 2015. "Short-term resource scheduling of a renewable energy based micro grid," Renewable Energy, Elsevier, vol. 75(C), pages 598-606.
    5. Derong Lv & Guojiang Xiong & Xiaofan Fu & Yang Wu & Sheng Xu & Hao Chen, 2022. "Optimal Power Flow with Stochastic Solar Power Using Clustering-Based Multi-Objective Differential Evolution," Energies, MDPI, vol. 15(24), pages 1-21, December.
    6. Paramjeet Kaur & Krishna Teerth Chaturvedi & Mohan Lal Kolhe, 2023. "Combined Heat and Power Economic Dispatching within Energy Network using Hybrid Metaheuristic Technique," Energies, MDPI, vol. 16(3), pages 1-17, January.
    7. Lai, Wenhao & Zheng, Xiaoliang & Song, Qi & Hu, Feng & Tao, Qiong & Chen, Hualiang, 2022. "Multi-objective membrane search algorithm: A new solution for economic emission dispatch," Applied Energy, Elsevier, vol. 326(C).
    8. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Xiong, Guojiang & Shuai, Maohang & Hu, Xiao, 2022. "Combined heat and power economic emission dispatch using improved bare-bone multi-objective particle swarm optimization," Energy, Elsevier, vol. 244(PB).
    10. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Ghasemi, Mojtaba & Ghavidel, Sahand & Ghanbarian, Mohammad Mehdi & Gharibzadeh, Masihallah & Azizi Vahed, Ali, 2014. "Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm," Energy, Elsevier, vol. 78(C), pages 276-289.
    12. Xu Chen & Shuai Fang & Kangji Li, 2023. "Reinforcement-Learning-Based Multi-Objective Differential Evolution Algorithm for Large-Scale Combined Heat and Power Economic Emission Dispatch," Energies, MDPI, vol. 16(9), pages 1-23, April.
    13. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & Gharehpetian, G.B., 2018. "A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2128-2143.
    14. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Elattar, Ehab & Ginidi, Ahmed R., 2022. "An Amalgamated Heap and Jellyfish Optimizer for economic dispatch in Combined heat and power systems including N-1 Unit outages," Energy, Elsevier, vol. 246(C).
    15. Tian, Zhe & Niu, Jide & Lu, Yakai & He, Shunming & Tian, Xue, 2016. "The improvement of a simulation model for a distributed CCHP system and its influence on optimal operation cost and strategy," Applied Energy, Elsevier, vol. 165(C), pages 430-444.
    16. Shaabani, Yousef ali & Seifi, Ali Reza & Kouhanjani, Masoud Joker, 2017. "Stochastic multi-objective optimization of combined heat and power economic/emission dispatch," Energy, Elsevier, vol. 141(C), pages 1892-1904.
    17. Bonan Huang & Chaoming Zheng & Qiuye Sun & Ruixue Hu, 2019. "Optimal Economic Dispatch for Integrated Power and Heating Systems Considering Transmission Losses," Energies, MDPI, vol. 12(13), pages 1-19, June.
    18. Zou, Dexuan & Li, Steven & Kong, Xiangyong & Ouyang, Haibin & Li, Zongyan, 2019. "Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy," Applied Energy, Elsevier, vol. 237(C), pages 646-670.
    19. Rieder, Andreas & Christidis, Andreas & Tsatsaronis, George, 2014. "Multi criteria dynamic design optimization of a small scale distributed energy system," Energy, Elsevier, vol. 74(C), pages 230-239.
    20. Shaheen, Abdullah M. & Ginidi, Ahmed R. & El-Sehiemy, Ragab A. & Elattar, Ehab E., 2021. "Optimal economic power and heat dispatch in Cogeneration Systems including wind power," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:762-:d:491029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.