IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p750-d490680.html
   My bibliography  Save this article

Huber-Based Robust Unscented Kalman Filter Distributed Drive Electric Vehicle State Observation

Author

Listed:
  • Wenkang Wan

    (School of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China)

  • Jingan Feng

    (School of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China)

  • Bao Song

    (School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430000, China)

  • Xinxin Li

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130000, China)

Abstract

Accurate and real-time acquisition of vehicle state parameters is key to improving the performance of vehicle control systems. To improve the accuracy of state parameter estimation for distributed drive electric vehicles, an unscented Kalman filter (UKF) algorithm combined with the Huber method is proposed. In this paper, we introduce the nonlinear modified Dugoff tire model, build a nonlinear three-degrees-of-freedom time-varying parametric vehicle dynamics model, and extend the vehicle mass, the height of the center of gravity, and the yaw moment of inertia, which are significantly influenced by the driving state, into the vehicle state vector. The vehicle state parameter observer was designed using an unscented Kalman filter framework. The Huber cost function was introduced to correct the measured noise and state covariance in real-time to improve the robustness of the observer. The simulation verification of a double-lane change and straight-line driving conditions at constant speed was carried out using the Simulink/Carsim platform. The results show that observation using the Huber-based robust unscented Kalman filter (HRUKF) more realistically reflects the vehicle state in real-time, effectively suppresses the influence of abnormal error and noise, and obtains high observation accuracy.

Suggested Citation

  • Wenkang Wan & Jingan Feng & Bao Song & Xinxin Li, 2021. "Huber-Based Robust Unscented Kalman Filter Distributed Drive Electric Vehicle State Observation," Energies, MDPI, vol. 14(3), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:750-:d:490680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/750/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/750/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taimoor Zahid & Weimin Li, 2016. "A Comparative Study Based on the Least Square Parameter Identification Method for State of Charge Estimation of a LiFePO 4 Battery Pack Using Three Model-Based Algorithms for Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-16, September.
    2. Jing Hou & He He & Yan Yang & Tian Gao & Yifan Zhang, 2019. "A Variational Bayesian and Huber-Based Robust Square Root Cubature Kalman Filter for Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(9), pages 1-23, May.
    3. Zepeng Gao & Sizhong Chen & Yuzhuang Zhao & Jinrui Nan, 2018. "Height Adjustment of Vehicles Based on a Static Equilibrium Position State Observation Algorithm," Energies, MDPI, vol. 11(2), pages 1-26, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiaohua Fang & Xuezhe Wei & Haifeng Dai, 2019. "A Remaining Discharge Energy Prediction Method for Lithium-Ion Battery Pack Considering SOC and Parameter Inconsistency," Energies, MDPI, vol. 12(6), pages 1-24, March.
    2. Shyh-Chin Huang & Kuo-Hsin Tseng & Jin-Wei Liang & Chung-Liang Chang & Michael G. Pecht, 2017. "An Online SOC and SOH Estimation Model for Lithium-Ion Batteries," Energies, MDPI, vol. 10(4), pages 1-18, April.
    3. Liang Zhang & Shunli Wang & Daniel-Ioan Stroe & Chuanyun Zou & Carlos Fernandez & Chunmei Yu, 2020. "An Accurate Time Constant Parameter Determination Method for the Varying Condition Equivalent Circuit Model of Lithium Batteries," Energies, MDPI, vol. 13(8), pages 1-12, April.
    4. Zahid, Taimoor & Xu, Kun & Li, Weimin & Li, Chenming & Li, Hongzhe, 2018. "State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles," Energy, Elsevier, vol. 162(C), pages 871-882.
    5. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    6. Xiaogang Wu & Wenwen Shi & Jiuyu Du, 2017. "Multi-Objective Optimal Charging Method for Lithium-Ion Batteries," Energies, MDPI, vol. 10(9), pages 1-18, August.
    7. Rui Xiong & Suleiman M. Sharkh & Xi Zhang, 2018. "Research Progress on Electric and Intelligent Vehicles," Energies, MDPI, vol. 11(7), pages 1-5, July.
    8. Qingxia Yang & Jun Xu & Binggang Cao & Xiuqing Li, 2017. "A simplified fractional order impedance model and parameter identification method for lithium-ion batteries," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-13, February.
    9. Mikel Oyarbide & Mikel Arrinda & Denis Sánchez & Haritz Macicior & Paul McGahan & Erik Hoedemaekers & Iosu Cendoya, 2020. "Capacity and Impedance Estimation by Analysing and Modeling in Real Time Incremental Capacity Curves," Energies, MDPI, vol. 13(18), pages 1-18, September.
    10. Chen, Lin & Yu, Wentao & Cheng, Guoyang & Wang, Jierui, 2023. "State-of-charge estimation of lithium-ion batteries based on fractional-order modeling and adaptive square-root cubature Kalman filter," Energy, Elsevier, vol. 271(C).
    11. Hongyuan Yuan & Youjun Han & Yu Zhou & Zongke Chen & Juan Du & Hailong Pei, 2022. "State of Charge Dual Estimation of a Li-ion Battery Based on Variable Forgetting Factor Recursive Least Square and Multi-Innovation Unscented Kalman Filter Algorithm," Energies, MDPI, vol. 15(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:750-:d:490680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.