IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8499-d704312.html
   My bibliography  Save this article

Electricity Generation from Low and Medium Temperature Industrial Excess Heat in the Kraft Pulp and Paper Industry

Author

Listed:
  • Igor Cruz

    (Energy Systems, Department of Management and Engineering, Linköping University, SE-581 83 Linköping, Sweden)

  • Magnus Wallén

    (Energy Systems, Department of Management and Engineering, Linköping University, SE-581 83 Linköping, Sweden)

  • Elin Svensson

    (CIT Industriell Energi AB, Sven Hultins Plats 1, SE-412 58 Gothenburg, Sweden)

  • Simon Harvey

    (Energy Technology, Department of Space, Earth and Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden)

Abstract

The recovery and utilisation of industrial excess heat has been identified as an important contribution for energy efficiency by reducing primary energy demand. Previous works, based on top-down studies for a few sectors, or regional case studies estimated the overall availability of industrial excess heat. A more detailed analysis is required to allow the estimation of potentials for specific heat recovery technologies, particularly regarding excess heat temperature profiles. This work combines process integration methods and regression analysis to obtain cogeneration targets, detailed excess heat temperature profiles and estimations of electricity generation potentials from low and medium temperature excess heat. The work is based on the use of excess heat temperature (XHT) signatures for individual sites and regression analysis using publicly available data, obtaining estimations of the technical potential for electricity generation from low and medium temperature excess heat (60–140 °C) for the whole Swedish kraft pulp and paper industry. The results show a technical potential to increase the electricity production at kraft mills in Sweden by 10 to 13%, depending on the level of process integration considered, and a lower availability of excess heat than previously estimated in studies for the sector. The approach used could be adapted and applied in other sectors and regions, increasing the level of detail at which industrial excess heat estimations are obtained when compared to previous studies.

Suggested Citation

  • Igor Cruz & Magnus Wallén & Elin Svensson & Simon Harvey, 2021. "Electricity Generation from Low and Medium Temperature Industrial Excess Heat in the Kraft Pulp and Paper Industry," Energies, MDPI, vol. 14(24), pages 1-27, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8499-:d:704312
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8499/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8499/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karlsson, Magnus & Gebremedhin, Alemayehu & Klugman, Sofia & Henning, Dag & Moshfegh, Bahram, 2009. "Regional energy system optimization - Potential for a regional heat market," Applied Energy, Elsevier, vol. 86(4), pages 441-451, April.
    2. Sandvall, Akram Fakhri & Börjesson, Martin & Ekvall, Tomas & Ahlgren, Erik O., 2015. "Modelling environmental and energy system impacts of large-scale excess heat utilisation – A regional case study," Energy, Elsevier, vol. 79(C), pages 68-79.
    3. Brueckner, Sarah & Miró, Laia & Cabeza, Luisa F. & Pehnt, Martin & Laevemann, Eberhard, 2014. "Methods to estimate the industrial waste heat potential of regions – A categorization and literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 164-171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seiji Matsuo & Masaya Suzuki & Teruaki Shimazu, 2022. "Proposal of Agro-Industrial Integration Heat Transport System Using High-Performance Medium for the Realization of a Sustainable Society," Energies, MDPI, vol. 15(3), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bertrand, Alexandre & Mian, Alberto & Kantor, Ivan & Aggoune, Riad & Maréchal, François, 2019. "Regional waste heat valorisation: A mixed integer linear programming method for energy service companies," Energy, Elsevier, vol. 167(C), pages 454-468.
    2. Sandvall, Akram Fakhri & Ahlgren, Erik O. & Ekvall, Tomas, 2016. "System profitability of excess heat utilisation – A case-based modelling analysis," Energy, Elsevier, vol. 97(C), pages 424-434.
    3. Lygnerud, Kristina & Werner, Sven, 2018. "Risk assessment of industrial excess heat recovery in district heating systems," Energy, Elsevier, vol. 151(C), pages 430-441.
    4. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    5. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    6. Doračić, Borna & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2020. "The effect of different parameters of the excess heat source on the levelized cost of excess heat," Energy, Elsevier, vol. 201(C).
    7. Krail, Jürgen & Beckmann, Georg & Schittl, Florian & Piringer, Gerhard, 2023. "Comparative thermodynamic analysis of an improved ORC process with integrated injection of process fluid," Energy, Elsevier, vol. 266(C).
    8. Dahan Sun & Zhongyan Liu & Hao Zhang & Xin Zhang, 2024. "Performance Analysis of a New Cogeneration System with Efficient Utilization of Waste Heat Resources and Energy Conversion Capabilities," Energies, MDPI, vol. 17(13), pages 1-28, July.
    9. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    10. Marina, A. & Spoelstra, S. & Zondag, H.A. & Wemmers, A.K., 2021. "An estimation of the European industrial heat pump market potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    11. Iosifov Valeriy Victorovich & Evgenii Yu. Khrustalev & Sergey N. Larin & Oleg E. Khrustalev, 2021. "The Linear Programming Problem of Regional Energy System Optimization," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 281-288.
    12. Bühler, Fabian & Petrović, Stefan & Karlsson, Kenneth & Elmegaard, Brian, 2017. "Industrial excess heat for district heating in Denmark," Applied Energy, Elsevier, vol. 205(C), pages 991-1001.
    13. Juroszek, Zbigniew & Kudelko, Mariusz, 2016. "A model of optimization for local energy infrastructure development," Energy, Elsevier, vol. 96(C), pages 625-643.
    14. Eriksson, Lina & Morandin, Matteo & Harvey, Simon, 2015. "Targeting capital cost of excess heat collection systems in complex industrial sites for district heating applications," Energy, Elsevier, vol. 91(C), pages 465-478.
    15. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
    16. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
    17. Sandvall, Akram Fakhri & Ahlgren, Erik O. & Ekvall, Tomas, 2017. "Low-energy buildings heat supply–Modelling of energy systems and carbon emissions impacts," Energy Policy, Elsevier, vol. 111(C), pages 371-382.
    18. Vanessa Burg & Florent Richardet & Severin Wälty & Ramin Roshandel & Stefanie Hellweg, 2023. "Mapping Local Synergies: Spatio-Temporal Analysis of Switzerland’s Waste Heat Potentials vs. Heat Demand," Energies, MDPI, vol. 17(1), pages 1-21, December.
    19. El Fil, Bachir & Garimella, Srinivas, 2021. "Waste heat recovery in commercial gas-fired tumble dryers," Energy, Elsevier, vol. 218(C).
    20. Halilovic, Smajil & Odersky, Leonhard & Hamacher, Thomas, 2022. "Integration of groundwater heat pumps into energy system optimization models," Energy, Elsevier, vol. 238(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8499-:d:704312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.