Dynamic Modelling and Validation of an Air-to-Water Reversible R744 Heat Pump for High Energy Demand Buildings
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Paride Gullo & Armin Hafner & Krzysztof Banasiak & Silvia Minetto & Ekaterini E. Kriezi, 2019. "Multi-Ejector Concept: A Comprehensive Review on its Latest Technological Developments," Energies, MDPI, vol. 12(3), pages 1-29, January.
- M. Gräber & K. Kosowski & C. Richter & W. Tegethoff, 2010. "Modelling of heat pumps with an object-oriented model library for thermodynamic systems," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 16(3), pages 195-209, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Volodymyr Voloshchuk & Paride Gullo & Eugene Nikiforovich, 2023. "Advanced Exergy Analysis of Ultra-Low GWP Reversible Heat Pumps for Residential Applications," Energies, MDPI, vol. 16(2), pages 1-17, January.
- Paul Byrne, 2022. "Research Summary and Literature Review on Modelling and Simulation of Heat Pumps for Simultaneous Heating and Cooling for Buildings," Energies, MDPI, vol. 15(10), pages 1-43, May.
- Piotr Duda & Mariusz Konieczny, 2022. "An Iterative Algorithm for the Estimation of Thermal Boundary Conditions Varying in Both Time and Space," Energies, MDPI, vol. 15(7), pages 1-13, April.
- Paul Byrne, 2022. "Modelling and Simulation of Heat Pumps for Simultaneous Heating and Cooling, a Special Issue," Energies, MDPI, vol. 15(16), pages 1-2, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ángel Á. Pardiñas & Michael Jokiel & Christian Schlemminger & Håkon Selvnes & Armin Hafner, 2021. "Modeling of a CO 2 -Based Integrated Refrigeration System for Supermarkets," Energies, MDPI, vol. 14(21), pages 1-21, October.
- Michal Haida & Rafal Fingas & Wojciech Szwajnoch & Jacek Smolka & Michal Palacz & Jakub Bodys & Andrzej J. Nowak, 2019. "An Object-Oriented R744 Two-Phase Ejector Reduced-Order Model for Dynamic Simulations," Energies, MDPI, vol. 12(7), pages 1-24, April.
- Knut Emil Ringstad & Krzysztof Banasiak & Åsmund Ervik & Armin Hafner, 2022. "Swirl-Bypass Nozzle for CO 2 Two-Phase Ejectors: Numerical Design Exploration," Energies, MDPI, vol. 15(18), pages 1-30, September.
- Laura Nebot-Andrés & Daniel Calleja-Anta & Daniel Sánchez & Ramón Cabello & Rodrigo Llopis, 2019. "Thermodynamic Analysis of a CO 2 Refrigeration Cycle with Integrated Mechanical Subcooling," Energies, MDPI, vol. 13(1), pages 1-17, December.
- Li, Shengyu & Yan, Jia & Liu, Zhan & Yao, Yong & Li, Xianbi & Wen, Na & Zou, Guorong, 2019. "Optimization on crucial ejector geometries in a multi-evaporator refrigeration system for tropical region refrigerated trucks," Energy, Elsevier, vol. 189(C).
- Lixing Zheng & Yiyan Zhang & Lifen Hao & Haojie Lian & Jianqiang Deng & Wei Lu, 2022. "Modelling, Optimization, and Experimental Studies of Refrigeration CO 2 Ejectors: A Review," Mathematics, MDPI, vol. 10(22), pages 1-23, November.
- Valeria Palomba & Efstratios Varvagiannis & Sotirios Karellas & Andrea Frazzica, 2019. "Hybrid Adsorption-Compression Systems for Air Conditioning in Efficient Buildings: Design through Validated Dynamic Models," Energies, MDPI, vol. 12(6), pages 1-28, March.
- Peris Pérez, Bernardo & Ávila Gutiérrez, Miguel & Expósito Carrillo, José Antonio & Salmerón Lissén, José Manuel, 2022. "Performance of Solar-driven Ejector Refrigeration System (SERS) as pre-cooling system for air handling units in warm climates," Energy, Elsevier, vol. 238(PA).
- Wolscht, Leonhard & Knobloch, Kai & Jacquemoud, Emmanuel & Jenny, Philipp, 2024. "Dynamic simulation and experimental validation of a 35 MW heat pump based on a transcritical CO2 cycle," Energy, Elsevier, vol. 294(C).
- Jianmei Feng & Jiquan Han & Zihui Pang & Xueyuan Peng, 2023. "Designing Hydrogen Recirculation Ejectors for Proton Exchange Membrane Fuel Cell Systems," Energies, MDPI, vol. 16(3), pages 1-10, January.
- Lawrence Drojetzki & Mieczyslaw Porowski, 2023. "Outdoor Climate as a Decision Variable in the Selection of an Energy-Optimal Refrigeration System Based on Natural Refrigerants for a Supermarket," Energies, MDPI, vol. 16(8), pages 1-24, April.
- Konrad, Mary Elizabeth & MacDonald, Brendan D., 2023. "Cold climate air source heat pumps: Industry progress and thermodynamic analysis of market-available residential units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
More about this item
Keywords
reversible heat pump; air conditioning; CO 2 ; numerical simulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8238-:d:697189. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.