IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8143-d695305.html
   My bibliography  Save this article

Torque Vectoring Control of RWID Electric Vehicle for Reducing Driving-Wheel Slippage Energy Dissipation in Cornering

Author

Listed:
  • Junnian Wang

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Siwen Lv

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Nana Sun

    (The Department of Technical Development, FAW-Volkswagen Automotive Co., Ltd., Changchun 130011, China)

  • Shoulin Gao

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Wen Sun

    (The School of Automotive Engineering, Changzhou Institute of Technology, Changzhou 213032, China)

  • Zidong Zhou

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

Abstract

The anxiety of driving range and inconvenience of battery recharging has placed high requirements on the energy efficiency of electric vehicles. To reduce driving-wheel slip energy consumption while cornering, a torque vectoring control strategy for a rear-wheel independent-drive (RWID) electric vehicle is proposed. First, the longitudinal linear stiffness of each driving wheel is estimated by using the approach of recursive least squares. Then, an initial differential torque is calculated for reducing their overall tire slippage energy dissipation. However, before the differential torque is applied to the two side of driving wheels, an acceleration slip regulation (ASR) is introduced into the overall control strategy to avoid entering into the tire adhesion saturation region resulting in excessive slip. Finally, the simulations of typical manoeuvring conditions are performed to verify the veracity of the estimated tire longitudinal linear stiffness and effectiveness of the torque vectoring control strategy. As a result, the proposed torque vectoring control leads to the largest reduction of around 17% slip power consumption for the situations carried out above.

Suggested Citation

  • Junnian Wang & Siwen Lv & Nana Sun & Shoulin Gao & Wen Sun & Zidong Zhou, 2021. "Torque Vectoring Control of RWID Electric Vehicle for Reducing Driving-Wheel Slippage Energy Dissipation in Cornering," Energies, MDPI, vol. 14(23), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8143-:d:695305
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Viola, 2021. "Electric Vehicles and Psychology," Sustainability, MDPI, vol. 13(2), pages 1-26, January.
    2. Cheng Lin & Zhifeng Xu, 2015. "Wheel Torque Distribution of Four-Wheel-Drive Electric Vehicles Based on Multi-Objective Optimization," Energies, MDPI, vol. 8(5), pages 1-17, April.
    3. Wen Sun & Juncai Rong & Junnian Wang & Wentong Zhang & Zidong Zhou, 2021. "Research on Optimal Torque Control of Turning Energy Consumption for EVs with Motorized Wheels," Energies, MDPI, vol. 14(21), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rufei Hou & Li Zhai & Tianmin Sun, 2018. "Steering Stability Control for a Four Hub-Motor Independent-Drive Electric Vehicle with Varying Adhesion Coefficient," Energies, MDPI, vol. 11(9), pages 1-17, September.
    2. Sanghamitra Mukherjee, 2021. "A Framework to Measure Regional Disparities in Battery Electric Vehicle Diffusion in Ireland," Working Papers 202119, School of Economics, University College Dublin.
    3. Guido Ala & Ilhami Colak & Gabriella Di Filippo & Rosario Miceli & Pietro Romano & Carla Silva & Stanimir Valtchev & Fabio Viola, 2021. "Electric Mobility in Portugal: Current Situation and Forecasts for Fuel Cell Vehicles," Energies, MDPI, vol. 14(23), pages 1-23, November.
    4. Chein-Chung Sun & Chun-Hung Chou & Yu-Liang Lin & Yu-Hua Huang, 2022. "A Cost-Effective Passive/Active Hybrid Equalizer Circuit Design," Energies, MDPI, vol. 15(6), pages 1-20, March.
    5. Ali Arababadi & Stephan Leyer & Joachim Hansen & Reza Arababadi, 2021. "Characterizing the Theory of Spreading Electric Vehicles in Luxembourg," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    6. Wael Alosaimi & Md Tarique Jamal Ansari & Abdullah Alharbi & Hashem Alyami & Saquib Ali & Alka Agrawal & Raees Ahmad Khan, 2021. "Toward a Unified Model Approach for Evaluating Different Electric Vehicles," Energies, MDPI, vol. 14(19), pages 1-19, September.
    7. Zhaolong Zhang & Yuan Zou & Xudong Zhang & Zhifeng Xu & Han Wang, 2020. "Driver Model Based on Optimized Calculation and Functional Safety Simulation," Energies, MDPI, vol. 13(24), pages 1-12, December.
    8. Konstantina Anastasiadou, 2021. "Sustainable Mobility Driven Prioritization of New Vehicle Technologies, Based on a New Decision-Aiding Methodology," Sustainability, MDPI, vol. 13(9), pages 1-27, April.
    9. Jiongjiong Cai & Peng Ke & Xiao Qu & Zihui Wang, 2022. "Research on the Design of Auxiliary Generator for Enthalpy Reduction and Steady Speed Scroll Expander," Energies, MDPI, vol. 15(9), pages 1-17, April.
    10. Mikel Arrinda & Gorka Vertiz & Denis Sanchéz & Aitor Makibar & Haritz Macicior, 2022. "Surrogate Model of the Optimum Global Battery Pack Thermal Management System Control," Energies, MDPI, vol. 15(5), pages 1-20, February.
    11. Wen Sun & Yang Chen & Junnian Wang & Xiangyu Wang & Lili Liu, 2022. "Research on TVD Control of Cornering Energy Consumption for Distributed Drive Electric Vehicles Based on PMP," Energies, MDPI, vol. 15(7), pages 1-19, April.
    12. Galvin, Ray, 2022. "Are electric vehicles getting too big and heavy? Modelling future vehicle journeying demand on a decarbonized US electricity grid," Energy Policy, Elsevier, vol. 161(C).
    13. Adam Novotny & Inez Szeberin & Sándor Kovács & Domicián Máté, 2022. "National Culture and the Market Development of Battery Electric Vehicles in 21 Countries," Energies, MDPI, vol. 15(4), pages 1-16, February.
    14. Kumar, Rajeev Ranjan & Guha, Pritha & Chakraborty, Abhishek, 2022. "Comparative assessment and selection of electric vehicle diffusion models: A global outlook," Energy, Elsevier, vol. 238(PC).
    15. Thanh Vo-Duy & Minh C. Ta & Bảo-Huy Nguyễn & João Pedro F. Trovão, 2020. "Experimental Platform for Evaluation of On-Board Real-Time Motion Controllers for Electric Vehicles," Energies, MDPI, vol. 13(23), pages 1-28, December.
    16. Yu-Fan Chen & I-Ming Chen & Joshua Chang & Tyng Liu, 2017. "Design and Analysis of a New Torque Vectoring System with a Ravigneaux Gearset for Vehicle Applications," Energies, MDPI, vol. 10(12), pages 1-16, December.
    17. Chuanjia Han & Bo Yang & Tao Bao & Tao Yu & Xiaoshun Zhang, 2017. "Bacteria Foraging Reinforcement Learning for Risk-Based Economic Dispatch via Knowledge Transfer," Energies, MDPI, vol. 10(5), pages 1-24, May.
    18. Kritika Deepak & Mohamed Amine Frikha & Yassine Benômar & Mohamed El Baghdadi & Omar Hegazy, 2023. "In-Wheel Motor Drive Systems for Electric Vehicles: State of the Art, Challenges, and Future Trends," Energies, MDPI, vol. 16(7), pages 1-31, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8143-:d:695305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.