IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8091-d694150.html
   My bibliography  Save this article

Novel Interleaved High Gain Boost Converter Using Switched Capacitor

Author

Listed:
  • Girish Ganesan Ramanathan

    (Graduate School of Engineering and Science, University of the Ryukyus, Nishihara-cho, Okinawa 903-0129, Japan
    Current address: Department of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0129, Japan.)

  • Naomitsu Urasaki

    (Faculty of Engineering and Science, University of the Ryukyus, Nishihara-cho, Okinawa 903-0129, Japan
    Current address: Department of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0129, Japan.)

Abstract

The increase in global energy demand has led to increased research in harvesting solar energy. Solar energy is widely used in homes, electric vehicles and is a great solution to power remote areas. DC–DC converters are essential in extracting power from solar panels. One of the main problems in designing converters for solar energy applications is boosting the low output voltage of the solar panel to meaningful levels. While there are several topologies to achieve high gain, some of the problems faced by them are the extreme duty ratio, complex design and discontinuous input current. This paper presents a novel topology that uses an interleaved input, a voltage lift capacitor and a hybrid switched capacitor network to achieve high gain without an extreme duty ratio or bulky magnetics. The proposed converter is controlled using a microcontroller which regulates the output voltage. The voltage lift capacitor and the switched capacitor network enhances the voltage gain over a conventional boost converter without an extreme duty ratio. The analysis and design of the proposed converter are presented and verified with a 100 W prototype. The results show that the converter provides a gain of 10, at a duty ratio of 30%, while delivering the designed output power with considerably high efficiency.

Suggested Citation

  • Girish Ganesan Ramanathan & Naomitsu Urasaki, 2021. "Novel Interleaved High Gain Boost Converter Using Switched Capacitor," Energies, MDPI, vol. 14(23), pages 1-12, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8091-:d:694150
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8091/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8091/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Köberle, Alexandre C. & Gernaat, David E.H.J. & van Vuuren, Detlef P., 2015. "Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation," Energy, Elsevier, vol. 89(C), pages 739-756.
    2. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    3. Eliana Arango & Carlos Andres Ramos-Paja & Javier Calvente & Roberto Giral & Sergio Serna, 2012. "Asymmetrical Interleaved DC/DC Switching Converters for Photovoltaic and Fuel Cell Applications—Part 1: Circuit Generation, Analysis and Design," Energies, MDPI, vol. 5(11), pages 1-34, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Honglun & Wang, Qiliang & Huang, Xiaona & Li, Jing & Pei, Gang, 2018. "Performance study and comparative analysis of traditional and double-selective-coated parabolic trough receivers," Energy, Elsevier, vol. 145(C), pages 206-216.
    2. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Ahmed G. Abo-Khalil & Walied Alharbi & Abdel-Rahman Al-Qawasmi & Mohammad Alobaid & Ibrahim M. Alarifi, 2021. "Maximum Power Point Tracking of PV Systems under Partial Shading Conditions Based on Opposition-Based Learning Firefly Algorithm," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    4. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    5. Wenzheng Xu & Nelson Hon Lung Chan & Siu Wing Or & Siu Lau Ho & Ka Wing Chan, 2017. "A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range," Energies, MDPI, vol. 10(10), pages 1-17, October.
    6. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    7. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    8. Eliana Arango & Carlos Andres Ramos-Paja & Javier Calvente & Roberto Giral & Sergio Ignacio Serna-Garces, 2013. "Asymmetrical Interleaved DC/DC Switching Converters for Photovoltaic and Fuel Cell Applications—Part 2: Control-Oriented Models," Energies, MDPI, vol. 6(10), pages 1-27, October.
    9. Mostafa Abdelrashied & Dikshita Bhattacharya, 2021. "Future Photovoltaic Electricity Production Targets and The Link to Consumption per Capita on The Policy Level in MENA Region," Papers 2109.02129, arXiv.org.
    10. Wang, Jianxing & Duan, Liqiang & Yang, Yongping, 2018. "An improvement crossover operation method in genetic algorithm and spatial optimization of heliostat field," Energy, Elsevier, vol. 155(C), pages 15-28.
    11. Girish Ganesan Ramanathan & Naomitsu Urasaki, 2022. "Non-Isolated Interleaved Hybrid Boost Converter for Renewable Energy Applications," Energies, MDPI, vol. 15(2), pages 1-14, January.
    12. Ali M. Eltamaly & M. S. Al-Saud & A. G. Abo-Khalil, 2020. "Performance Improvement of PV Systems’ Maximum Power Point Tracker Based on a Scanning PSO Particle Strategy," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
    13. Padmanathan K. & Uma Govindarajan & Vigna K. Ramachandaramurthy & Sudar Oli Selvi T., 2017. "Multiple Criteria Decision Making (MCDM) Based Economic Analysis of Solar PV System with Respect to Performance Investigation for Indian Market," Sustainability, MDPI, vol. 9(5), pages 1-19, May.
    14. Juan-Guillermo Muñoz & Guillermo Gallo & Fabiola Angulo & Gustavo Osorio, 2018. "Slope Compensation Design for a Peak Current-Mode Controlled Boost-Flyback Converter," Energies, MDPI, vol. 11(11), pages 1-18, November.
    15. Zhi-Kai Fan & Kuo-Lung Lian & Jia-Fu Lin, 2023. "A New Golden Eagle Optimization with Stooping Behaviour for Photovoltaic Maximum Power Tracking under Partial Shading," Energies, MDPI, vol. 16(15), pages 1-19, July.
    16. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Ali M. Eltamaly, 2021. "A Novel Strategy for Optimal PSO Control Parameters Determination for PV Energy Systems," Sustainability, MDPI, vol. 13(2), pages 1-28, January.
    18. Abbasi, H.N. & Zeeshan, Muhammad, 2023. "An integrated Geographic Information System and Analytical Hierarchy process based approach for site suitability analysis of on-grid hybrid concentrated solar-biomass powerplant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    19. Esmaeil Ahmadi & Benjamin McLellan & Seiichi Ogata & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "An Integrated Planning Framework for Sustainable Water and Energy Supply," Sustainability, MDPI, vol. 12(10), pages 1-37, May.
    20. Sánchez, David & Bortkiewicz, Anna & Rodríguez, José M. & Martínez, Gonzalo S. & Gavagnin, Giacomo & Sánchez, Tomás, 2016. "A methodology to identify potential markets for small-scale solar thermal power generators," Applied Energy, Elsevier, vol. 169(C), pages 287-300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8091-:d:694150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.