IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8074-d693830.html
   My bibliography  Save this article

Application of Time-Voltage Characteristics in Overcurrent Scheme to Reduce Arc-Flash Incident Energy for Safety and Reliability of Microgrid Protection

Author

Listed:
  • Feras Alasali

    (Department of Electrical Engineering, Faculty of Engineering, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan)

  • Saad M. Saad

    (College of Electrical and Electronics Technology, Algwarsha, Benghazi, Libya)

  • Naser El-Naily

    (College of Electrical and Electronics Technology, Algwarsha, Benghazi, Libya)

  • Anis Layas

    (College of Electrical and Electronics Technology, Algwarsha, Benghazi, Libya)

  • Abdelsalam Elhaffar

    (Department of Electrical and Computer Engineering, Sultan Qaboos University, Muscat 123, Oman
    Department of Electrical Engineering, University of Benghazi, Benghazi, Libya)

  • Tawfiq Hussein

    (Department of Electrical Engineering, University of Benghazi, Benghazi, Libya)

  • Faisal A. Mohamed

    (Authority of Natural Science Research and Technology, Tripoli, Libya)

Abstract

The interconnection between diverse Distribution Generations (DGs) that utilize various technologies and complex structure of networks are the most characteristic of modern Distribution Networks (DN). The wide adoption of DGs considerably affects the power flow dynamics in the DN and consequently the fault characteristics. The excessive level of fault currents can pose risks of heat (high temperature) and pressure in accordance to Arc Flash (AF) incident energy in microgrids. This research studies the relationship between AF severity and the solving of coordination problem of Overcurrent Relays (OCRs) in DN, and introduces a novel equation that considers the AF qualities in solving the coordination problem for OCRs. In this study, a novel optimization problem, the AF severity with the optimal coordination of OCRs in DN is presented and the Water Cycle Optimization Method (WCOM) is employed to find the best combination of the OCR’s settings in the DN while considering the AF induced energy. The proposed optimization approach and the novel equation are evaluated with an IEC microgrid and compared with the conventional protection method and Particle Swarm Optimization (PSO) used in optimizing the coordination of OCR in the DN. The optimal settings of the OCR scheme are achieved and examined on the modified IEC microgrid benchmark system. In order to verify the result, an industrial simulation package (ETAP) and OCR (GE Multiin, model-750/760) was used in this work.

Suggested Citation

  • Feras Alasali & Saad M. Saad & Naser El-Naily & Anis Layas & Abdelsalam Elhaffar & Tawfiq Hussein & Faisal A. Mohamed, 2021. "Application of Time-Voltage Characteristics in Overcurrent Scheme to Reduce Arc-Flash Incident Energy for Safety and Reliability of Microgrid Protection," Energies, MDPI, vol. 14(23), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8074-:d:693830
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8074/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8074/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baziar, Aliasghar & Kavousi-Fard, Abdollah, 2013. "Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices," Renewable Energy, Elsevier, vol. 59(C), pages 158-166.
    2. Khaled Nusair & Feras Alasali, 2020. "Optimal Power Flow Management System for a Power Network with Stochastic Renewable Energy Resources Using Golden Ratio Optimization Method," Energies, MDPI, vol. 13(14), pages 1-46, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feras Alasali & Mohammad Salameh & Ali Semrin & Khaled Nusair & Naser El-Naily & William Holderbaum, 2022. "Optimal Controllers and Configurations of 100% PV and Energy Storage Systems for a Microgrid: The Case Study of a Small Town in Jordan," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    2. Wen, Xin & Abbes, Dhaker & Francois, Bruno, 2021. "Modeling of photovoltaic power uncertainties for impact analysis on generation scheduling and cost of an urban micro grid," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 116-128.
    3. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    4. Zhao, Bo & Xue, Meidong & Zhang, Xuesong & Wang, Caisheng & Zhao, Junhui, 2015. "An MAS based energy management system for a stand-alone microgrid at high altitude," Applied Energy, Elsevier, vol. 143(C), pages 251-261.
    5. Ben Christopher, S.J. & Carolin Mabel, M., 2020. "A bio-inspired approach for probabilistic energy management of micro-grid incorporating uncertainty in statistical cost estimation," Energy, Elsevier, vol. 203(C).
    6. Boukettaya, Ghada & Krichen, Lotfi, 2014. "A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications," Energy, Elsevier, vol. 71(C), pages 148-159.
    7. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Træholt, Chresten, 2018. "Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage," Renewable Energy, Elsevier, vol. 123(C), pages 204-217.
    8. Yaçine Merrad & Mohamed Hadi Habaebi & Siti Fauziah Toha & Md. Rafiqul Islam & Teddy Surya Gunawan & Mokhtaria Mesri, 2022. "Fully Decentralized, Cost-Effective Energy Demand Response Management System with a Smart Contracts-Based Optimal Power Flow Solution for Smart Grids," Energies, MDPI, vol. 15(12), pages 1-27, June.
    9. Ozkaya, Burcin, 2024. "Enhanced growth optimizer algorithm with dynamic fitness-distance balance method for solution of security-constrained optimal power flow problem in the presence of stochastic wind and solar energy," Applied Energy, Elsevier, vol. 368(C).
    10. Javidsharifi, Mahshid & Niknam, Taher & Aghaei, Jamshid & Mokryani, Geev, 2018. "Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices," Applied Energy, Elsevier, vol. 216(C), pages 367-381.
    11. Deihimi, Ali & Keshavarz Zahed, Babak & Iravani, Reza, 2016. "An interactive operation management of a micro-grid with multiple distributed generations using multi-objective uniform water cycle algorithm," Energy, Elsevier, vol. 106(C), pages 482-509.
    12. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Kavousi-Fard, Abdollah & Abbasi, Alireza & Rostami, Mohammad-Amin & Khosravi, Abbas, 2015. "Optimal distribution feeder reconfiguration for increasing the penetration of plug-in electric vehicles and minimizing network costs," Energy, Elsevier, vol. 93(P2), pages 1693-1703.
    14. Rabiee, Abdorreza & Sadeghi, Mohammad & Aghaeic, Jamshid & Heidari, Alireza, 2016. "Optimal operation of microgrids through simultaneous scheduling of electrical vehicles and responsive loads considering wind and PV units uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 721-739.
    15. Cheng, Yu-Shan & Chuang, Man-Tsai & Liu, Yi-Hua & Wang, Shun-Chung & Yang, Zong-Zhen, 2016. "A particle swarm optimization based power dispatch algorithm with roulette wheel re-distribution mechanism for equality constraint," Renewable Energy, Elsevier, vol. 88(C), pages 58-72.
    16. Khorshidi, Reza & Shabaninia, Faridon & Niknam, Taher, 2016. "A new smart approach for state estimation of distribution grids considering renewable energy sources," Energy, Elsevier, vol. 94(C), pages 29-37.
    17. Lombardi, P. & Sokolnikova, T. & Suslov, K. & Voropai, N. & Styczynski, Z.A., 2016. "Isolated power system in Russia: A chance for renewable energies?," Renewable Energy, Elsevier, vol. 90(C), pages 532-541.
    18. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    19. Ho-Sung Ryu & Mun-Kyeom Kim, 2020. "Two-Stage Optimal Microgrid Operation with a Risk-Based Hybrid Demand Response Program Considering Uncertainty," Energies, MDPI, vol. 13(22), pages 1-25, November.
    20. Qi, Yunying & Xu, Xiao & Liu, Youbo & Pan, Li & Liu, Junyong & Hu, Weihao, 2024. "Intelligent energy management for an on-grid hydrogen refueling station based on dueling double deep Q network algorithm with NoisyNet," Renewable Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8074-:d:693830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.