IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7898-d687317.html
   My bibliography  Save this article

Moisture Risk Analysis for Three Construction Variants of a Wooden Inverted Flat Roof

Author

Listed:
  • Agnieszka Sadłowska-Sałęga

    (Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, 31-120 Kraków, Poland)

  • Krzysztof Wąs

    (Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, 31-120 Kraków, Poland)

Abstract

The paper presents an analysis of the hygrothermal performance of an inverted flat roof with a CLT (cross-laminated timber) structure in a building that meets the requirements of Passive House Standard (PHS) with regards to the potential risk of moisture. The calculations were made in the WUFI ® Plus and WUFI ® Bio software. The following variants were taken into account: three structure configurations, three different external climates and different scenarios of microclimate control and air change rate. The results of the calculations show that, especially in cooler climates, there is an actual moisture risk in the structure despite the excellent thermal insulation. The structure of the inverted flat roof, due to the use of a tight membrane on the outer side, allows for the partition to discharge the excess moisture only to the inside of the building. Ensuring the comfort of users may require periodic humidification of internal air, which translates directly into an increase in moisture content of the structure. The performed analysis clearly showed that there are no universal solutions. It is important to point out that for the proper performance of inverted wooden roofs, it is crucial to analyse moisture, not only thermal and energy parameters.

Suggested Citation

  • Agnieszka Sadłowska-Sałęga & Krzysztof Wąs, 2021. "Moisture Risk Analysis for Three Construction Variants of a Wooden Inverted Flat Roof," Energies, MDPI, vol. 14(23), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7898-:d:687317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7898/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7898/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Bevilacqua, Piero & Bruno, Roberto & Arcuri, Natale, 2020. "Green roofs in a Mediterranean climate: energy performances based on in-situ experimental data," Renewable Energy, Elsevier, vol. 152(C), pages 1414-1430.
    3. Alejandro Padilla-Rivera & Ben Amor & Pierre Blanchet, 2018. "Evaluating the Link between Low Carbon Reductions Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-Frame Residential Building in Quebec, Canada," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Szymczak-Graczyk & Gabriela Gajewska & Ireneusz Laks & Wojciech Kostrzewski, 2022. "Influence of Variable Moisture Conditions on the Value of the Thermal Conductivity of Selected Insulation Materials Used in Passive Buildings," Energies, MDPI, vol. 15(7), pages 1-17, April.
    2. Paweł Sokołowski & Grzegorz Nawalany & Małgorzata Michalik, 2022. "Analysis of the Impact of Flooring Material and Construction Solutions on Heat Exchange with the Ground in a Historic Wooden Building," Energies, MDPI, vol. 15(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renata Rapisarda & Francesco Nocera & Vincenzo Costanzo & Gaetano Sciuto & Rosa Caponetto, 2022. "Hydroponic Green Roof Systems as an Alternative to Traditional Pond and Green Roofs: A Literature Review," Energies, MDPI, vol. 15(6), pages 1-27, March.
    2. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    4. Roberto Bruno & Francesco Nicoletti & Giorgio Cuconati & Stefania Perrella & Daniela Cirone, 2020. "Performance Indexes of an Air-Water Heat Pump Versus the Capacity Ratio: Analysis by Means of Experimental Data," Energies, MDPI, vol. 13(13), pages 1-19, July.
    5. Harkaitz García & Mikel Zubizarreta & Jesús Cuadrado & Juan Luis Osa, 2018. "Sustainability Improvement in the Design of Lightweight Roofs: A New Prototype of Hybrid Steel and Wood Purlins," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    6. Marcin K. Widomski & Anna Musz-Pomorska & Justyna Gołębiowska, 2023. "Hydrologic Effectiveness and Economic Efficiency of Green Architecture in Selected Urbanized Catchment," Land, MDPI, vol. 12(7), pages 1-19, June.
    7. Peter J. Irga & Fraser R. Torpy & Daniel Griffin & Sara J. Wilkinson, 2023. "Vertical Greening Systems: A Perspective on Existing Technologies and New Design Recommendation," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    8. Pei-Wen Chung & Stephen J. Livesley & John P. Rayner & Claire Farrell, 2021. "Rooting Volume Impacts Growth, Coverage and Thermal Tolerance of Green Façade Climbing Plants," Land, MDPI, vol. 10(12), pages 1-13, November.
    9. Jon Laurenz & Jone Belausteguigoitia & Ander de la Fuente & Daniel Roehr, 2021. "Green Urban (RE) Generation: A Research and Practice Methodology to Better Implement Green Urban Infrastructure Solutions," Land, MDPI, vol. 10(12), pages 1-24, December.
    10. Natale Arcuri & Manuela De Ruggiero & Francesca Salvo & Raffaele Zinno, 2020. "Automated Valuation Methods through the Cost Approach in a BIM and GIS Integration Framework for Smart City Appraisals," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    11. Mostafa Kazemi & Luc Courard & Julien Hubert, 2021. "Heat Transfer Measurement within Green Roof with Incinerated Municipal Solid Waste Aggregates," Sustainability, MDPI, vol. 13(13), pages 1-12, June.
    12. Jerzy Szyszka & Piero Bevilacqua & Roberto Bruno, 2020. "An Innovative Trombe Wall for Winter Use: The Thermo-Diode Trombe Wall," Energies, MDPI, vol. 13(9), pages 1-15, May.
    13. Behrouz Pirouz & Natale Arcuri & Behzad Pirouz & Stefania Anna Palermo & Michele Turco & Mario Maiolo, 2020. "Development of an Assessment Method for Evaluation of Sustainable Factories," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
    14. Evola, Gianpiero & Costanzo, Vincenzo & Infantone, Marco & Marletta, Luigi, 2021. "Typical-year and multi-year building energy simulation approaches: A critical comparison," Energy, Elsevier, vol. 219(C).
    15. Luca Evangelisti & Claudia Guattari & Gianluca Grazieschi & Marta Roncone & Francesco Asdrubali, 2020. "On the Energy Performance of an Innovative Green Roof in the Mediterranean Climate," Energies, MDPI, vol. 13(19), pages 1-18, October.
    16. Michał Dziadkiewicz & Renata Włodarczyk & Katarzyna Sukiennik, 2022. "Innovative Ecological Transformations in the Management of Municipal Real Estate," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    17. Liu, Hongxiao & Hamel, Perrine & Tardieu, Léa & Remme, Roy P. & Han, Baolong & Ren, Hai, 2022. "A geospatial model of nature-based recreation for urban planning: Case study of Paris, France," Land Use Policy, Elsevier, vol. 117(C).
    18. Elena Korol & Natalia Shushunova, 2022. "Analysis and Valuation of the Energy-Efficient Residential Building with Innovative Modular Green Wall Systems," Sustainability, MDPI, vol. 14(11), pages 1-13, June.
    19. Puxin Liu, 2023. "An assessment of financial mechanisms for green financial recovery and climate change mitigation: the case of China," Economic Change and Restructuring, Springer, vol. 56(3), pages 1567-1584, June.
    20. Vincenzo Costanzo & Gianpiero Evola & Marco Infantone & Luigi Marletta, 2020. "Updated Typical Weather Years for the Energy Simulation of Buildings in Mediterranean Climate. A Case Study for Sicily," Energies, MDPI, vol. 13(16), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7898-:d:687317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.