IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7735-d682204.html
   My bibliography  Save this article

Assessment of Durum Wheat ( Triticum durum Desf.) Genotypes Diversity for the Integrated Production of Bioethanol and Grains

Author

Listed:
  • Donatella Danzi

    (Institute of Biosciences and Bioresources, National Research Council, 70126 Bari, Italy)

  • Ivana Marino

    (Agenzia Lucana di Sviluppo e Innovazione in Agricoltura, Centro Ricerche Metapontum Agrobios, 75012 Bernalda, Italy)

  • Isabella De Bari

    (ENEA C.R. Trisaia, 75026 Rotondella, Italy)

  • Silvio Mastrolitti

    (ENEA C.R. Trisaia, 75026 Rotondella, Italy)

  • Giacomo L. Petretto

    (Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy)

  • Domenico Pignone

    (Institute of Biosciences and Bioresources, National Research Council, 70126 Bari, Italy
    Institute of Veterinary and Agrifood Bioethics, 00054 Fiumicino, Italy)

  • Michela Janni

    (Institute of Biosciences and Bioresources, National Research Council, 70126 Bari, Italy)

  • Francesco Cellini

    (Agenzia Lucana di Sviluppo e Innovazione in Agricoltura, Centro Ricerche Metapontum Agrobios, 75012 Bernalda, Italy)

  • Tullio Venditti

    (Institute of Sciences of Food Production, National Research Council, 07100 Sassari, Italy)

Abstract

Wheat straw is an abundant source of lignocellulosic biomass that is generally not utilized for biofuel production, nor for other uses. Recent EU renewable energy directive fosters bioethanol production through lignocellulosic sugars fermentation, but the cost of this process is an issue that often depends on biomass characteristics. Lignin is a class of three-dimensional polymers providing structural integrity of plant tissues. Its complex structure, together with hemicelluloses and uronic acids content, could affect the ability of hydrolyzing biomass to fermentable sugars. To get insights into this variation, a set of 10 durum wheat genotypes was analyzed to determine variation of straw digestibility to fermentable sugars. The results showed that the lignin content was the major factor determining the recalcitrance to enzymatic process. The analysis of Spearman’s correlation indicated that the sugar released after enzymatic hydrolysis had a negative connection with the lignin content, while it was positively correlated with the culm length. The possible role of other cell wall components, such as arabinose and uronic acids, was also discussed. This work aimed at analyzing the diversity of lignocellulosic digestibility to fermentable sugars of wheat straw in a small germplasm collection. Some of the selected genotypes were characterized by high sugars digestibility and high grain yield, characteristics that could make biorefining of wheat straw profitable.

Suggested Citation

  • Donatella Danzi & Ivana Marino & Isabella De Bari & Silvio Mastrolitti & Giacomo L. Petretto & Domenico Pignone & Michela Janni & Francesco Cellini & Tullio Venditti, 2021. "Assessment of Durum Wheat ( Triticum durum Desf.) Genotypes Diversity for the Integrated Production of Bioethanol and Grains," Energies, MDPI, vol. 14(22), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7735-:d:682204
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7735/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7735/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saraly Andrade de Sá & Charles Palmer & Stefanie Engel, 2012. "Ethanol Production, Food and Forests," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(1), pages 1-21, January.
    2. Demirbas, Ayhan, 2009. "Political, economic and environmental impacts of biofuels: A review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 108-117, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Thurlow & Giacomo Branca & Erika Felix & Irini Maltsoglou & Luis E. Rincón, 2016. "Producing Biofuels in Low-Income Countries: An Integrated Environmental and Economic Assessment for Tanzania," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(2), pages 153-171, June.
    2. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    3. Lechón, Y. & de la Rúa, C. & Rodríguez, I. & Caldés, N., 2019. "Socioeconomic implications of biofuels deployment through an Input-Output approach. A case study in Uruguay," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 178-191.
    4. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    5. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    6. Winden, Matthew & Cruze, Nathan & Haab, Tim & Bakshi, Bhavik, 2015. "Monetized value of the environmental, health and resource externalities of soy biodiesel," Energy Economics, Elsevier, vol. 47(C), pages 18-24.
    7. Phanankosi Moyo & Mahluli Moyo & Donatus Dube & Oswell Rusinga, 2013. "Biofuel Policy as a Key Driver for Sustainable Development in the Biofuel Sector: The Missing Ingredient in Zimbabwe’s Biofuel Pursuit," Modern Applied Science, Canadian Center of Science and Education, vol. 8(1), pages 1-36, February.
    8. Wang, Kai-Hua & Su, Chi-Wei & Lobonţ, Oana-Ramona & Umar, Muhammad, 2021. "Whether crude oil dependence and CO2 emissions influence military expenditure in net oil importing countries?," Energy Policy, Elsevier, vol. 153(C).
    9. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    10. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Malça, João & Coelho, António & Freire, Fausto, 2014. "Environmental life-cycle assessment of rapeseed-based biodiesel: Alternative cultivation systems and locations," Applied Energy, Elsevier, vol. 114(C), pages 837-844.
    12. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    13. Cai, Hua & Hu, Xiaojun & Xu, Ming, 2013. "Impact of emerging clean vehicle system on water stress," Applied Energy, Elsevier, vol. 111(C), pages 644-651.
    14. Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng & Xu, Jia, 2012. "Experimental study of n-butanol addition on performance and emissions with diesel low temperature combustion," Energy, Elsevier, vol. 47(1), pages 515-521.
    15. Bahel, Eric & Marrouch, Walid & Gaudet, Gérard, 2013. "The economics of oil, biofuel and food commodities," Resource and Energy Economics, Elsevier, vol. 35(4), pages 599-617.
    16. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    17. Zhang, Zhi-Hui & Balasubramanian, Rajasekhar, 2016. "Investigation of particulate emission characteristics of a diesel engine fueled with higher alcohols/biodiesel blends," Applied Energy, Elsevier, vol. 163(C), pages 71-80.
    18. Mishra, Shashank & Anand, K. & Santhosh, S. & Mehta, Pramod S., 2017. "Comparison of biodiesel fuel behavior in a heavy duty turbocharged and a light duty naturally aspirated engine," Applied Energy, Elsevier, vol. 202(C), pages 459-470.
    19. Kim, Jun-Soo & Choi, Jae-Hyuk, 2023. "Feasibility study on bio-heavy fuel as an alternative for marine fuel," Renewable Energy, Elsevier, vol. 219(P2).
    20. Nagy, Karoly & Körmendi, Krisztina, 2012. "Use of renewable energy sources in light of the “New Energy Strategy for Europe 2011–2020”," Applied Energy, Elsevier, vol. 96(C), pages 393-399.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7735-:d:682204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.