Process simulation and energy analysis of synthetic natural gas production from water electrolysis and CO2 capture in a waste incinerator
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.121200
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Zheng & Zhang, Hao & Xu, Haoran & Xuan, Jin, 2021. "Advancing the multiscale understanding on solid oxide electrolysis cells via modelling approaches: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Elena Rozzi & Francesco Demetrio Minuto & Andrea Lanzini & Pierluigi Leone, 2020. "Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses," Energies, MDPI, vol. 13(2), pages 1-96, January.
- Giglio, Emanuele & Pirone, Raffaele & Bensaid, Samir, 2021. "Dynamic modelling of methanation reactors during start-up and regulation in intermittent power-to-gas applications," Renewable Energy, Elsevier, vol. 170(C), pages 1040-1051.
- Mofarahi, Masoud & Khojasteh, Yaser & Khaledi, Hiwa & Farahnak, Arsalan, 2008. "Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine," Energy, Elsevier, vol. 33(8), pages 1311-1319.
- van Leeuwen, Charlotte & Mulder, Machiel, 2018. "Power-to-gas in electricity markets dominated by renewables," Applied Energy, Elsevier, vol. 232(C), pages 258-272.
- Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
- Gorre, Jachin & Ortloff, Felix & van Leeuwen, Charlotte, 2019. "Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Böhm, Hans & Zauner, Andreas & Rosenfeld, Daniel C. & Tichler, Robert, 2020. "Projecting cost development for future large-scale power-to-gas implementations by scaling effects," Applied Energy, Elsevier, vol. 264(C).
- Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
- Gorre, Jachin & Ruoss, Fabian & Karjunen, Hannu & Schaffert, Johannes & Tynjälä, Tero, 2020. "Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation," Applied Energy, Elsevier, vol. 257(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tian, Zhen & Zhou, Yihang & Zhang, Yuan & Gao, Wenzhong, 2024. "Design principle, 4E analyses and optimization for onboard CCS system under EEDI framework: A case study of an LNG-fueled bulk carrier," Energy, Elsevier, vol. 295(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Bedoić, Robert & Dorotić, Hrvoje & Schneider, Daniel Rolph & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2021. "Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant," Renewable Energy, Elsevier, vol. 173(C), pages 12-23.
- Rishabh Agarwal, 2022. "Economic Analysis of Renewable Power-to-Gas in Norway," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
- Qi, Meng & Lee, Jaewon & Hong, Seokyoung & Kim, Jeongdong & Liu, Yi & Park, Jinwoo & Moon, Il, 2022. "Flexible and efficient renewable-power-to-methane concept enabled by liquid CO2 energy storage: Optimization with power allocation and storage sizing," Energy, Elsevier, vol. 256(C).
- Duncan, Corey & Roche, Robin & Jemei, Samir & Pera, Marie-Cécile, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Applied Energy, Elsevier, vol. 315(C).
- Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).
- Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
- Daniele Candelaresi & Linda Moretti & Alessandra Perna & Giuseppe Spazzafumo, 2021. "Heat Recovery from a PtSNG Plant Coupled with Wind Energy," Energies, MDPI, vol. 14(22), pages 1-21, November.
- Johannes Dock & Stefan Wallner & Anna Traupmann & Thomas Kienberger, 2022. "Provision of Demand-Side Flexibility through the Integration of Power-to-Gas Technologies in an Electric Steel Mill," Energies, MDPI, vol. 15(16), pages 1-22, August.
- Pignataro, Valeria & Liponi, Angelica & Bargiacchi, Eleonora & Ferrari, Lorenzo, 2024. "Dynamic model of a power-to-gas system: Role of hydrogen storage and management strategies," Renewable Energy, Elsevier, vol. 230(C).
- Gábor Pörzse & Zoltán Csedő & Máté Zavarkó, 2021. "Disruption Potential Assessment of the Power-to-Methane Technology," Energies, MDPI, vol. 14(8), pages 1-21, April.
- Janke, Leandro & McDonagh, Shane & Weinrich, Sören & Murphy, Jerry & Nilsson, Daniel & Hansson, Per-Anders & Nordberg, Åke, 2020. "Optimizing power-to-H2 participation in the Nord Pool electricity market: Effects of different bidding strategies on plant operation," Renewable Energy, Elsevier, vol. 156(C), pages 820-836.
- Wang, Haibing & Li, Bowen & Zhao, Anjie & Sun, Weiqing, 2024. "Two-stage planning model of power-to-gas station considering carbon emission flow," Energy, Elsevier, vol. 296(C).
- Ikäheimo, Jussi & Weiss, Robert & Kiviluoma, Juha & Pursiheimo, Esa & Lindroos, Tomi J., 2022. "Impact of power-to-gas on the cost and design of the future low-carbon urban energy system," Applied Energy, Elsevier, vol. 305(C).
- Máté Zavarkó & Attila R. Imre & Gábor Pörzse & Zoltán Csedő, 2021. "Past, Present and Near Future: An Overview of Closed, Running and Planned Biomethanation Facilities in Europe," Energies, MDPI, vol. 14(18), pages 1-27, September.
- Maeder, Mattia & Weiss, Olga & Boulouchos, Konstantinos, 2021. "Assessing the need for flexibility technologies in decarbonized power systems: A new model applied to Central Europe," Applied Energy, Elsevier, vol. 282(PA).
- Gupta, Ruchi & Rüdisüli, Martin & Patel, Martin Kumar & Parra, David, 2022. "Smart power-to-gas deployment strategies informed by spatially explicit cost and value models," Applied Energy, Elsevier, vol. 327(C).
- Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
- Katla, Daria & Bartela, Łukasz & Skorek-Osikowska, Anna, 2020. "Evaluation of electricity generation subsystem of power-to-gas-to-power unit using gas expander and heat recovery steam generator," Energy, Elsevier, vol. 212(C).
More about this item
Keywords
Power-to-gas; Carbon capture and utilization; Electrolysis; Methanation; Thermal integration; Hydrogen;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:343:y:2023:i:c:s0306261923005640. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.