IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7647-d679994.html
   My bibliography  Save this article

Numerical Model of Heat Pipes as an Optimization Method of Heat Exchangers

Author

Listed:
  • Łukasz Adrian

    (Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland)

  • Szymon Szufa

    (Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland)

  • Piotr Piersa

    (Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland)

  • Filip Mikołajczyk

    (Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland)

Abstract

This paper presents research results on heat pipe numerical models as optimization of heat pipe heat exchangers for intensification of heat exchange processes and the creation of heat exchangers with high efficiency while reducing their dimensions. This work and results will allow for the extension of their application in passive and low-energy construction. New findings will provide a broader understanding of how heat pipes work and discover their potential to intensify heat transfer processes, heat recovery and the development of low-energy building engineering. The need to conduct research and analyses on the subject of this study is conditioned by the need to save primary energy in both construction engineering and industry. The need to save primary energy and reduce emissions of carbon dioxide and other pollutants has been imposed on the EU Member States through multiple directives and regulations. The presented numerical model of the heat pipe and the results of computer simulations are identical to the experimental results for all tested heat pipe geometries, the presented working factors and their best degrees of filling.

Suggested Citation

  • Łukasz Adrian & Szymon Szufa & Piotr Piersa & Filip Mikołajczyk, 2021. "Numerical Model of Heat Pipes as an Optimization Method of Heat Exchangers," Energies, MDPI, vol. 14(22), pages 1-38, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7647-:d:679994
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7647/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7647/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michał Głogowski & Przemysław Kubiak & Szymon Szufa & Piotr Piersa & Łukasz Adrian & Mateusz Krukowski, 2021. "The Use of the Fourier Series to Analyze the Shaping of Thermodynamic Processes in Heat Engines," Energies, MDPI, vol. 14(8), pages 1-23, April.
    2. Qilu Chen & Yutao Shi & Zhi Zhuang & Li Weng & Chengjun Xu & Jianqiu Zhou, 2021. "Numerical Analysis of Liquid–Liquid Heat Pipe Heat Exchanger Based on a Novel Model," Energies, MDPI, vol. 14(3), pages 1-19, January.
    3. Zuoqin Qian & Qiang Wang & Song Lv, 2020. "Research on the Thermal Hydraulic Performance and Entropy Generation Characteristics of Finned Tube Heat Exchanger with Streamline Tube," Energies, MDPI, vol. 13(20), pages 1-28, October.
    4. Liping Pang & Kun Luo & Shizhao Yu & Desheng Ma & Miao Zhao & Xiaodong Mao, 2020. "Study on Heat Transfer Performance of Antifreeze-R134a Heat Exchanger (ARHEx)," Energies, MDPI, vol. 13(22), pages 1-14, November.
    5. Eui-Hyeok Song & Kye-Bock Lee & Seok-Ho Rhi, 2021. "Thermal and Flow Simulation of Concentric Annular Heat Pipe with Symmetric or Asymmetric Condenser," Energies, MDPI, vol. 14(11), pages 1-23, June.
    6. Qunxiang Gao & Ping Zhang & Wei Peng & Songzhe Chen & Gang Zhao, 2021. "Structural Design Simulation of Bayonet Heat Exchanger for Sulfuric Acid Decomposition," Energies, MDPI, vol. 14(2), pages 1-18, January.
    7. Agnieszka Ochman & Wei-Qin Chen & Przemysław Błasiak & Michał Pomorski & Sławomir Pietrowicz, 2021. "The Use of Capsuled Paraffin Wax in Low-Temperature Thermal Energy Storage Applications: An Experimental and Numerical Investigation," Energies, MDPI, vol. 14(3), pages 1-27, January.
    8. Łukasz Adrian & Szymon Szufa & Piotr Piersa & Piotr Kuryło & Filip Mikołajczyk & Krystian Kurowski & Sławomir Pochwała & Andrzej Obraniak & Jacek Stelmach & Grzegorz Wielgosiński & Justyna Czerwińska , 2021. "Analysis and Evaluation of Heat Pipe Efficiency to Reduce Low Emission with the Use of Working Agents R134A, R404A and R407C, R410A," Energies, MDPI, vol. 14(7), pages 1-29, March.
    9. Emanuele Teodori & Pedro Pontes & Ana Moita & Anastasios Georgoulas & Marco Marengo & Antonio Moreira, 2017. "Sensible Heat Transfer during Droplet Cooling: Experimental and Numerical Analysis," Energies, MDPI, vol. 10(6), pages 1-27, June.
    10. Yong-Dong Zhang & Miao-Ru Chen & Jung-Hsien Wu & Kuo-Shu Hung & Chi-Chuan Wang, 2021. "Performance Improvement of a Double-Layer Microchannel Heat Sink via Novel Fin Geometry—A Numerical Study," Energies, MDPI, vol. 14(12), pages 1-23, June.
    11. Jingang Yang & Yaohua Zhao & Aoxue Chen & Zhenhua Quan, 2019. "Thermal Performance of a Low-Temperature Heat Exchanger Using a Micro Heat Pipe Array," Energies, MDPI, vol. 12(4), pages 1-16, February.
    12. Byunghui Kim & Kuisoon Kim & Seokho Kim, 2020. "Numerical Study on Novel Design for Compact Parallel-Flow Heat Exchanger with Manifolds to Improve Flow Characteristics," Energies, MDPI, vol. 13(23), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Zhai & Xu Zhao & Zhifeng Dong, 2022. "Research on Performance Optimization of Gravity Heat Pipe for Mine Return Air," Energies, MDPI, vol. 15(22), pages 1-14, November.
    2. Łukasz Adrian & Szymon Szufa & Filip Mikołajczyk & Piotr Piersa & Michał Głogowski, 2023. "Improving the Energy Efficiency of Equipment for the Impregnation of Roof Trusses—Modeling and Practical Implementation," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    3. Yu Zhai & Xu Zhao & Guanghui Xue & Zhifeng Dong, 2023. "Study on Heat Transfer Performance and Parameter Improvement of Gravity-Assisted Heat Pipe Heat Transfer Unit for Waste Heat Recovery from Mine Return Air," Energies, MDPI, vol. 16(17), pages 1-17, August.
    4. Piotr Piersa & Hilal Unyay & Szymon Szufa & Wiktoria Lewandowska & Remigiusz Modrzewski & Radosław Ślężak & Stanisław Ledakowicz, 2022. "An Extensive Review and Comparison of Modern Biomass Torrefaction Reactors vs. Biomass Pyrolysis—Part 1," Energies, MDPI, vol. 15(6), pages 1-34, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Adrian & Szymon Szufa & Piotr Piersa & Piotr Kuryło & Filip Mikołajczyk & Krystian Kurowski & Sławomir Pochwała & Andrzej Obraniak & Jacek Stelmach & Grzegorz Wielgosiński & Justyna Czerwińska , 2021. "Analysis and Evaluation of Heat Pipe Efficiency to Reduce Low Emission with the Use of Working Agents R134A, R404A and R407C, R410A," Energies, MDPI, vol. 14(7), pages 1-29, March.
    2. Konstantinos Vontas & Manolia Andredaki & Anastasios Georgoulas & Nicolas Miché & Marco Marengo, 2021. "The Effect of Hydraulic Diameter on Flow Boiling within Single Rectangular Microchannels and Comparison of Heat Sink Configuration of a Single and Multiple Microchannels," Energies, MDPI, vol. 14(20), pages 1-23, October.
    3. Pochwała, Sławomir & Anweiler, Stanisław & Tańczuk, Mariusz & Klementowski, Igor & Przysiężniuk, Dawid & Adrian, Łukasz & McNamara, Greg & Stevanović, Žana, 2023. "Energy source impact on the economic and environmental effects of retrofitting a heritage building with a heat pump system," Energy, Elsevier, vol. 278(PB).
    4. Zhe Yan & Yan Li, 2018. "A Comprehensive Study of Dynamic and Heat Transfer Characteristics of Droplet Impact on Micro-Scale Rectangular Grooved Surface," Energies, MDPI, vol. 11(6), pages 1-17, May.
    5. Piotr Piersa & Hilal Unyay & Szymon Szufa & Wiktoria Lewandowska & Remigiusz Modrzewski & Radosław Ślężak & Stanisław Ledakowicz, 2022. "An Extensive Review and Comparison of Modern Biomass Torrefaction Reactors vs. Biomass Pyrolysis—Part 1," Energies, MDPI, vol. 15(6), pages 1-34, March.
    6. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & López-Rey, África, 2018. "Technical approach for the inclusion of superconducting magnetic energy storage in a smart city," Energy, Elsevier, vol. 158(C), pages 1080-1091.
    7. Min-Seob Shin & Santhosh Senguttuvan & Sung-Min Kim, 2021. "Investigations of Flow and Heat Transfer Characteristics in a Channel Impingement Cooling Configuration with a Single Row of Water Jets," Energies, MDPI, vol. 14(14), pages 1-16, July.
    8. Łukasz Adrian & Szymon Szufa & Filip Mikołajczyk & Piotr Piersa & Michał Głogowski, 2023. "Improving the Energy Efficiency of Equipment for the Impregnation of Roof Trusses—Modeling and Practical Implementation," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    9. Michał Głogowski & Przemysław Kubiak & Szymon Szufa & Piotr Piersa & Łukasz Adrian & Mateusz Krukowski, 2021. "The Use of the Fourier Series to Analyze the Shaping of Thermodynamic Processes in Heat Engines," Energies, MDPI, vol. 14(8), pages 1-23, April.
    10. A. V. Demidovich & S. S. Kralinova & P. P. Tkachenko & N. E. Shlegel & R. S. Volkov, 2019. "Interaction of Liquid Droplets in Gas and Vapor Flows," Energies, MDPI, vol. 12(22), pages 1-24, November.
    11. Grzegorz Górecki & Marcin Łęcki & Artur Norbert Gutkowski & Dariusz Andrzejewski & Bartosz Warwas & Michał Kowalczyk & Artur Romaniak, 2021. "Experimental and Numerical Study of Heat Pipe Heat Exchanger with Individually Finned Heat Pipes," Energies, MDPI, vol. 14(17), pages 1-26, August.
    12. Ozen Gunal & Mustafa Akpinar & Kevser Ovaz Akpinar, 2022. "Optimization of Laminar Boundary Layers in Flow over a Flat Plate Using Recent Metaheuristic Algorithms," Energies, MDPI, vol. 15(14), pages 1-20, July.
    13. Shogo Tomita & Hasan Celik & Moghtada Mobedi, 2021. "Thermal Analysis of Solid/Liquid Phase Change in a Cavity with One Wall at Periodic Temperature," Energies, MDPI, vol. 14(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7647-:d:679994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.