IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6129-d449427.html
   My bibliography  Save this article

Study on Heat Transfer Performance of Antifreeze-R134a Heat Exchanger (ARHEx)

Author

Listed:
  • Liping Pang

    (School of Aviation Science and Engineering, Beihang University, Beijing 100191, China)

  • Kun Luo

    (School of Aviation Science and Engineering, Beihang University, Beijing 100191, China)

  • Shizhao Yu

    (AVIC Xinxiang Aviation Industry (Group) Co., Ltd., Xinxiang 453049, China)

  • Desheng Ma

    (School of Aviation Science and Engineering, Beihang University, Beijing 100191, China)

  • Miao Zhao

    (School of Aviation Science and Engineering, Beihang University, Beijing 100191, China)

  • Xiaodong Mao

    (School of Aero-engine, Shenyang Aerospace University, Shenyang 110136, China)

Abstract

In this paper, the liquid cooling and vapor compression refrigeration system based on an Antifreeze-R134a Heat Exchanger (ARHEx) was applied to the thermal management system for high-power avionics in helicopters. The heat transfer performance of the ARHEx was studied. An experimental prototype of ARHEx was designed and established. A series of experiments was carried out with a ground experimental condition. A heat transfer formula for the antifreeze side in the ARHEx was obtained by means of the coefficient of Nusselt number with experimental analysis. The performance of heat transfer and pressure drop for the refrigerant side of the ARHEx was deduced for the given condition.

Suggested Citation

  • Liping Pang & Kun Luo & Shizhao Yu & Desheng Ma & Miao Zhao & Xiaodong Mao, 2020. "Study on Heat Transfer Performance of Antifreeze-R134a Heat Exchanger (ARHEx)," Energies, MDPI, vol. 13(22), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6129-:d:449427
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6129/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6129/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyemin Song & Younghyeon Kim & Dongjin Yu & Byoung Jae Kim & Hyunjin Ji & Sangseok Yu, 2020. "A Computational Analysis of a Methanol Steam Reformer Using Phase Change Heat Transfer," Energies, MDPI, vol. 13(17), pages 1-14, August.
    2. Miao Zhao & Liping Pang & Meng Liu & Shizhao Yu & Xiaodong Mao, 2020. "Control Strategy for Helicopter Thermal Management System Based on Liquid Cooling and Vapor Compression Refrigeration," Energies, MDPI, vol. 13(9), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łukasz Adrian & Szymon Szufa & Piotr Piersa & Filip Mikołajczyk, 2021. "Numerical Model of Heat Pipes as an Optimization Method of Heat Exchangers," Energies, MDPI, vol. 14(22), pages 1-38, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongjin Yu & Byoungjae Kim & Hyunjin Ji & Sangseok Yu, 2022. "Sensitivity Analysis of High-Pressure Methanol—Steam Reformer Using the Condensation Enthalpy of Water Vapor," Energies, MDPI, vol. 15(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6129-:d:449427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.