IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7587-d678181.html
   My bibliography  Save this article

Experimental Analysis of GBM to Expand the Time Horizon of Irish Electricity Price Forecasts

Author

Listed:
  • Conor Lynch

    (Nimbus Research Centre, Munster Technological University, T12 Y275 Cork, Ireland)

  • Christian O’Leary

    (Nimbus Research Centre, Munster Technological University, T12 Y275 Cork, Ireland)

  • Preetham Govind Kolar Sundareshan

    (Department of Computer Science, Munster Technological University, T12 P928 Cork, Ireland)

  • Yavuz Akin

    (Campus Georges Charpak Provence, École des Mines de Saint-Étienne, 880 Route de Mimet, 13120 Gardanne, France)

Abstract

In response to the inherent challenges of generating cost-effective electricity consumption schedules for dynamic systems, this paper espouses the use of GBM or Gradient Boosting Machine-based models for electricity price forecasting. These models are applied to data streams from the Irish electricity market and achieve favorable results, relative to the current state-of-the-art. Presently, electricity prices are published 10 h in advance of the trade day of interest. Using the forecasting methodology outlined in this paper, an estimation of these prices can be made available one day in advance of the official price publication, thus extending the time available to plan electricity utilization from the grid to be as cost effectively as possible. Extreme Gradient Boosting Machine (XGBM) models achieved a Mean Absolute Error (MAE) of 9.93 for data from 30 September 2018 to 12 December 2019 which is an 11.4% improvement on the avant-garde. LGBM models achieve a MAE score 9.58 on more recent data: the full year of 2020.

Suggested Citation

  • Conor Lynch & Christian O’Leary & Preetham Govind Kolar Sundareshan & Yavuz Akin, 2021. "Experimental Analysis of GBM to Expand the Time Horizon of Irish Electricity Price Forecasts," Energies, MDPI, vol. 14(22), pages 1-11, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7587-:d:678181
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7587/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7587/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandre Lucas & Konstantinos Pegios & Evangelos Kotsakis & Dan Clarke, 2020. "Price Forecasting for the Balancing Energy Market Using Machine-Learning Regression," Energies, MDPI, vol. 13(20), pages 1-16, October.
    2. Gürtler, Marc & Paulsen, Thomas, 2018. "The effect of wind and solar power forecasts on day-ahead and intraday electricity prices in Germany," Energy Economics, Elsevier, vol. 75(C), pages 150-162.
    3. Croonenbroeck, Carsten & Hüttel, Silke, 2017. "Quantifying the economic efficiency impact of inaccurate renewable energy price forecasts," Energy, Elsevier, vol. 134(C), pages 767-774.
    4. José R. Andrade & Jorge Filipe & Marisa Reis & Ricardo J. Bessa, 2017. "Probabilistic Price Forecasting for Day-Ahead and Intraday Markets: Beyond the Statistical Model," Sustainability, MDPI, vol. 9(11), pages 1-29, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Siwan & Shi, Jianheng & Wang, Baoyue & An, Na & Li, Li & Hou, Xuebing & Wang, Chunsen & Zhang, Xiandong & Wang, Kai & Li, Huilin & Zhang, Sui & Zhong, Ming, 2024. "A hybrid framework for day-ahead electricity spot-price forecasting: A case study in China," Applied Energy, Elsevier, vol. 373(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janczura, Joanna & Wójcik, Edyta, 2022. "Dynamic short-term risk management strategies for the choice of electricity market based on probabilistic forecasts of profit and risk measures. The German and the Polish market case study," Energy Economics, Elsevier, vol. 110(C).
    2. Ilkay Oksuz & Umut Ugurlu, 2019. "Neural Network Based Model Comparison for Intraday Electricity Price Forecasting," Energies, MDPI, vol. 12(23), pages 1-14, November.
    3. Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
    4. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    5. Cramer, Eike & Witthaut, Dirk & Mitsos, Alexander & Dahmen, Manuel, 2023. "Multivariate probabilistic forecasting of intraday electricity prices using normalizing flows," Applied Energy, Elsevier, vol. 346(C).
    6. Joanna Janczura & Aleksandra Michalak, 2020. "Optimization of Electric Energy Sales Strategy Based on Probabilistic Forecasts," Energies, MDPI, vol. 13(5), pages 1-16, February.
    7. Simon Hirsch & Florian Ziel, 2022. "Simulation-based Forecasting for Intraday Power Markets: Modelling Fundamental Drivers for Location, Shape and Scale of the Price Distribution," Papers 2211.13002, arXiv.org.
    8. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1533-1547.
    9. Silvia Golia & Luigi Grossi & Matteo Pelagatti, 2022. "Machine Learning Models and Intra-Daily Market Information for the Prediction of Italian Electricity Prices," Forecasting, MDPI, vol. 5(1), pages 1-21, December.
    10. Sam Wilkinson & Michele John & Gregory M. Morrison, 2021. "Rooftop PV and the Renewable Energy Transition; a Review of Driving Forces and Analytical Frameworks," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    11. Christian Giovanelli & Seppo Sierla & Ryutaro Ichise & Valeriy Vyatkin, 2018. "Exploiting Artificial Neural Networks for the Prediction of Ancillary Energy Market Prices," Energies, MDPI, vol. 11(7), pages 1-22, July.
    12. Maciejowska, Katarzyna & Nitka, Weronika & Weron, Tomasz, 2021. "Enhancing load, wind and solar generation for day-ahead forecasting of electricity prices," Energy Economics, Elsevier, vol. 99(C).
    13. Sheybanivaziri, Samaneh & Le Dréau, Jérôme & Kazmi, Hussain, 2024. "Forecasting price spikes in day-ahead electricity markets: techniques, challenges, and the road ahead," Discussion Papers 2024/1, Norwegian School of Economics, Department of Business and Management Science.
    14. Jethro Browell, 2018. "Risk Constrained Trading Strategies for Stochastic Generation with a Single-Price Balancing Market," Energies, MDPI, vol. 11(6), pages 1-17, May.
    15. Harcourt, Freddie & Angeloudis, Athanasios & Piggott, Matthew D., 2019. "Utilising the flexible generation potential of tidal range power plants to optimise economic value," Applied Energy, Elsevier, vol. 237(C), pages 873-884.
    16. Pereira, Diogo Santos & Marques, António Cardoso, 2020. "How should price-responsive electricity tariffs evolve? An analysis of the German net demand case," Utilities Policy, Elsevier, vol. 66(C).
    17. Mauro Bernardi & Francesco Lisi, 2020. "Point and Interval Forecasting of Zonal Electricity Prices and Demand Using Heteroscedastic Models: The IPEX Case," Energies, MDPI, vol. 13(23), pages 1-34, November.
    18. Rodríguez, Fermín & Galarza, Ainhoa & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control," Energy, Elsevier, vol. 239(PB).
    19. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2021. "The Merit-Order Effect on the Swedish bidding zone with the highest electricity flow in the Elspot market," Energy Economics, Elsevier, vol. 102(C).
    20. Jiang, Ping & Nie, Ying & Wang, Jianzhou & Huang, Xiaojia, 2023. "Multivariable short-term electricity price forecasting using artificial intelligence and multi-input multi-output scheme," Energy Economics, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7587-:d:678181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.