IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7561-d677733.html
   My bibliography  Save this article

Formation and Growth Behavior Analysis of Slagging Rings in Rotary Kiln-Type Hazardous Waste Incineration Systems

Author

Listed:
  • Jing Zhao

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China)

  • Zirui Zhang

    (State Key Laboratory of High-Temperature Gas Kinetics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
    School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Bo Li

    (State Key Laboratory of High-Temperature Gas Kinetics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China)

  • Xiaolin Wei

    (State Key Laboratory of High-Temperature Gas Kinetics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China)

Abstract

Rotary kiln incineration technology has the advantages of strong material adaptability and a simple treatment process and has been widely used in hazardous waste treatment. However, the actual incineration process has caused problems such as ring formation in the treatment system due to the lack of research on the slagging mechanisms. In this paper, slagging phenomena occurring in the second half of the rotary kiln, the exit flue of the secondary combustion chamber, and the wall of the quench tower are analyzed and discussed in detail through characterization methods. The results indicate that the adhesion of low-melting alkali metal salts on the refractory surface in the second half of the rotary kiln is the key factor in forming the initial slagging layer. In the growth process of the slagging ring, the formed liquid phase can bond incineration residues of different sizes together and form a dense embryo body through liquid phase sintering. The deposition and solidification of molten/semi-molten fly ashes cause slagging formation in the exit flue of the secondary combustion chamber. The slagging phenomenon occurring in the inner wall of the quench tower belongs to the “crystalline-coalesce-hardening” process of the inorganic salts precipitating out of the high-salt wastewater.

Suggested Citation

  • Jing Zhao & Zirui Zhang & Bo Li & Xiaolin Wei, 2021. "Formation and Growth Behavior Analysis of Slagging Rings in Rotary Kiln-Type Hazardous Waste Incineration Systems," Energies, MDPI, vol. 14(22), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7561-:d:677733
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7561/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7561/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gengyuan Liu & Zhifeng Yang & Bin Chen & Yan Zhang & Meirong Su & Lixiao Zhang, 2013. "Emergy Evaluation of the Urban Solid Waste Handling in Liaoning Province, China," Energies, MDPI, vol. 6(10), pages 1-21, October.
    2. Vijayaragavan Krishnamoorthy & Sarma V. Pisupati, 2015. "A Critical Review of Mineral Matter Related Issues during Gasification of Coal in Fixed, Fluidized, and Entrained Flow Gasifiers," Energies, MDPI, vol. 8(9), pages 1-34, September.
    3. Xia, Zihong & Long, Jisheng & Yan, Shuai & Bai, Li & Du, Hailiang & Chen, Caixia, 2021. "Two-fluid simulation of moving grate waste incinerator: Comparison of 2D and 3D bed models," Energy, Elsevier, vol. 216(C).
    4. Lai, ZhiYi & Ma, XiaoQian & Tang, YuTing & Lin, Hai, 2011. "A study on municipal solid waste (MSW) combustion in N2/O2 and CO2/O2 atmosphere from the perspective of TGA," Energy, Elsevier, vol. 36(2), pages 819-824.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vijayaragavan Krishnamoorthy & Sarma V. Pisupati, 2019. "Effect of Temperature, Pressure, Feed Particle Size, and Feed Particle Density on Structural Characteristics and Reactivity of Chars Generated during Gasification of Pittsburgh No.8 Coal in a High-Pre," Energies, MDPI, vol. 12(24), pages 1-27, December.
    2. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    3. López-González, D. & Avalos-Ramirez, A. & Giroir-Fendler, A. & Godbout, S. & Fernandez-Lopez, M. & Sanchez-Silva, L. & Valverde, J.L., 2015. "Combustion kinetic study of woody and herbaceous crops by thermal analysis coupled to mass spectrometry," Energy, Elsevier, vol. 90(P2), pages 1626-1635.
    4. Su, Xianqiang & Fang, Qingyan & Ma, Lun & Yin, Chungen & Chen, Xinke & Zhang, Cheng & Tan, Peng & Chen, Gang, 2024. "Mathematical modeling of a 30 MW biomass-fired grate boiler: A reliable baseline model taking fuel-bed structure into account," Energy, Elsevier, vol. 288(C).
    5. Chen, Qiuwen & Ma, Xiaohan & Hu, Jiayu & Zhang, Xiaohong, 2023. "Comparison of comprehensive performance of kiwifruit production in China, Iran, and Italy based on emergy and carbon emissions," Ecological Modelling, Elsevier, vol. 483(C).
    6. Zhang, XiaoHong & Wei, Ye & Li, Min & Deng, ShiHuai & Wu, Jun & Zhang, YanZong & Xiao, Hong, 2014. "Emergy evaluation of an integrated livestock wastewater treatment system," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 95-107.
    7. Mortari, Daniela A. & Pereira, Fernando M. & Crnkovic, Paula M., 2020. "Experimental investigation of the carbon dioxide effect on the devolatilization and combustion of a coal and sugarcane bagasse," Energy, Elsevier, vol. 204(C).
    8. Wu, Guixuan & Seebold, Sören & Yazhenskikh, Elena & Tanner, Joanne & Hack, Klaus & Müller, Michael, 2019. "Slag mobility in entrained flow gasifiers optimized using a new reliable viscosity model of iron oxide-containing multicomponent melts," Applied Energy, Elsevier, vol. 236(C), pages 837-849.
    9. Xiang, Qing & Pan, Hengyu & Ma, Xiaohan & Yang, Mingdong & Lyu, Yanfeng & Zhang, Xiaohong & Shui, Wei & Liao, Wenjie & Xiao, Yinlong & Wu, Jun & Zhang, Yanzong & Xu, Min, 2024. "Impacts of energy-saving and emission-reduction on sustainability of cement production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    10. Xingpeng Chen & Jiaxing Pang & Zilong Zhang & Hengji Li, 2014. "Sustainability Assessment of Solid Waste Management in China: A Decoupling and Decomposition Analysis," Sustainability, MDPI, vol. 6(12), pages 1-14, December.
    11. Pan, Hengyu & Geng, Yong & Jiang, Ping & Dong, Huijuan & Sun, Lu & Wu, Rui, 2018. "An emergy based sustainability evaluation on a combined landfill and LFG power generation system," Energy, Elsevier, vol. 143(C), pages 310-322.
    12. Yongqi Liang & Jian Tang & Heng Xia & Loai Aljerf & Bingyin Gao & Mulugeta Legesse Akele, 2023. "Three-Dimensional Numerical Modeling and Analysis for the Municipal Solid-Waste Incineration of the Grate Furnace for Particulate-Matter Generation," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    13. Jinsu Kim & Hyunmin Oh & Seokyoung Lee & Young-Seek Yoon, 2018. "Advanced One-Dimensional Entrained-Flow Gasifier Model Considering Melting Phenomenon of Ash," Energies, MDPI, vol. 11(4), pages 1-14, April.
    14. Dongliang Zhang & Guangqing Huang & Yimin Xu & Qinghua Gong, 2015. "Waste-to-Energy in China: Key Challenges and Opportunities," Energies, MDPI, vol. 8(12), pages 1-15, December.
    15. Haili Liu & Xu Zhang & Qingchao Hong, 2021. "Emission Characteristics of Pollution Gases from the Combustion of Food Waste," Energies, MDPI, vol. 14(19), pages 1-11, October.
    16. Ana Ramos & Carlos Afonso Teixeira & Abel Rouboa, 2018. "Environmental Analysis of Waste-to-Energy—A Portuguese Case Study," Energies, MDPI, vol. 11(3), pages 1-26, March.
    17. Xie, Candie & Liu, Jingyong & Zhang, Xiaochun & Xie, Wuming & Sun, Jian & Chang, Kenlin & Kuo, Jiahong & Xie, Wenhao & Liu, Chao & Sun, Shuiyu & Buyukada, Musa & Evrendilek, Fatih, 2018. "Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks," Applied Energy, Elsevier, vol. 212(C), pages 786-795.
    18. Tang, Yuting & Ma, Xiaoqian & Lai, Zhiyi & Zhou, Daoxi & Lin, Hai & Chen, Yong, 2012. "NOx and SO2 emissions from municipal solid waste (MSW) combustion in CO2/O2 atmosphere," Energy, Elsevier, vol. 40(1), pages 300-306.
    19. Wienchol, Paulina & Korus, Agnieszka & Szlęk, Andrzej & Ditaranto, Mario, 2022. "Thermogravimetric and kinetic study of thermal degradation of various types of municipal solid waste (MSW) under N2, CO2 and oxy-fuel conditions," Energy, Elsevier, vol. 248(C).
    20. Bai, Yonghui & Wang, Yulong & Zhu, Shenghua & Li, Fan & Xie, Kechang, 2014. "Structural features and gasification reactivity of coal chars formed in Ar and CO2 atmospheres at elevated pressures," Energy, Elsevier, vol. 74(C), pages 464-470.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7561-:d:677733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.