IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7481-d675418.html
   My bibliography  Save this article

Cost-Optimized Microgrid Coalitions Using Bayesian Reinforcement Learning

Author

Listed:
  • Mohammad Sadeghi

    (School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

  • Shahram Mollahasani

    (School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

  • Melike Erol-Kantarci

    (School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

Abstract

Microgrids are empowered by the advances in renewable energy generation, which enable the microgrids to generate the required energy for supplying their loads and trade the surplus energy to other microgrids or the macrogrid. Microgrids need to optimize the scheduling of their demands and energy levels while trading their surplus with others to minimize the overall cost. This can be affected by various factors such as variations in demand, energy generation, and competition among microgrids due to their dynamic nature. Thus, reaching optimal scheduling is challenging due to the uncertainty caused by the generation/consumption of renewable energy and the complexity of interconnected microgrids and their interplay. Previous works mainly rely on modeling-based approaches and the availability of precise information on microgrid dynamics. This paper addresses the energy trading problem among microgrids by minimizing the cost while uncertainty exists in microgrid generation and demand. To this end, a Bayesian coalitional reinforcement learning-based model is introduced to minimize the energy trading cost among microgrids by forming stable coalitions. The results show that the proposed model can minimize the cost up to 23% with respect to the coalitional game theory model.

Suggested Citation

  • Mohammad Sadeghi & Shahram Mollahasani & Melike Erol-Kantarci, 2021. "Cost-Optimized Microgrid Coalitions Using Bayesian Reinforcement Learning," Energies, MDPI, vol. 14(22), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7481-:d:675418
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7481/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7481/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mei, Jie & Chen, Chen & Wang, Jianhui & Kirtley, James L., 2019. "Coalitional game theory based local power exchange algorithm for networked microgrids," Applied Energy, Elsevier, vol. 239(C), pages 133-141.
    2. Mohammad Sadeghi & Shahram Mollahasani & Melike Erol-Kantarci, 2020. "Power Loss-Aware Transactive Microgrid Coalitions under Uncertainty," Energies, MDPI, vol. 13(21), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    2. Mohammad Javad Bordbari & Fuzhan Nasiri, 2024. "Networked Microgrids: A Review on Configuration, Operation, and Control Strategies," Energies, MDPI, vol. 17(3), pages 1-28, February.
    3. Bhatti, Bilal Ahmad & Broadwater, Robert, 2019. "Energy trading in the distribution system using a non-model based game theoretic approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Chen, Yang & Park, Byungkwon & Kou, Xiao & Hu, Mengqi & Dong, Jin & Li, Fangxing & Amasyali, Kadir & Olama, Mohammed, 2020. "A comparison study on trading behavior and profit distribution in local energy transaction games," Applied Energy, Elsevier, vol. 280(C).
    5. Mahdi Azimian & Vahid Amir & Reza Habibifar & Hessam Golmohamadi, 2021. "Probabilistic Optimization of Networked Multi-Carrier Microgrids to Enhance Resilience Leveraging Demand Response Programs," Sustainability, MDPI, vol. 13(11), pages 1-30, May.
    6. Filipe Bandeiras & Álvaro Gomes & Mário Gomes & Paulo Coelho, 2023. "Exploring Energy Trading Markets in Smart Grid and Microgrid Systems and Their Implications for Sustainability in Smart Cities," Energies, MDPI, vol. 16(2), pages 1-41, January.
    7. Wang, Yifei & Wang, Xiuli & Shao, Chengcheng & Gong, Naiwei, 2020. "Distributed energy trading for an integrated energy system and electric vehicle charging stations: A Nash bargaining game approach," Renewable Energy, Elsevier, vol. 155(C), pages 513-530.
    8. Romain Mannini & Julien Eynard & Stéphane Grieu, 2022. "A Survey of Recent Advances in the Smart Management of Microgrids and Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-37, September.
    9. Bhatti, Bilal Ahmad & Broadwater, Robert, 2020. "Distributed Nash Equilibrium Seeking for a Dynamic Micro-grid Energy Trading Game with Non-quadratic Payoffs," Energy, Elsevier, vol. 202(C).
    10. Omar Makram Kamel & Ahmed A. Zaki Diab & Mohamed Metwally Mahmoud & Ameena Saad Al-Sumaiti & Hamdy M. Sultan, 2023. "Performance Enhancement of an Islanded Microgrid with the Support of Electrical Vehicle and STATCOM Systems," Energies, MDPI, vol. 16(4), pages 1-19, February.
    11. Li, Zhengmao & Wu, Lei & Xu, Yan & Wang, Luhao & Yang, Nan, 2023. "Distributed tri-layer risk-averse stochastic game approach for energy trading among multi-energy microgrids," Applied Energy, Elsevier, vol. 331(C).
    12. Han, Dongho & Lee, Jay H., 2021. "Two-stage stochastic programming formulation for optimal design and operation of multi-microgrid system using data-based modeling of renewable energy sources," Applied Energy, Elsevier, vol. 291(C).
    13. Janko, Samantha & Johnson, Nathan G., 2020. "Reputation-based competitive pricing negotiation and power trading for grid-connected microgrid networks," Applied Energy, Elsevier, vol. 277(C).
    14. Fina, Bernadette & Auer, Hans & Friedl, Werner, 2019. "Profitability of PV sharing in energy communities: Use cases for different settlement patterns," Energy, Elsevier, vol. 189(C).
    15. Nawaz, Arshad & Zhou, Min & Wu, Jing & Long, Chengnian, 2022. "A comprehensive review on energy management, demand response, and coordination schemes utilization in multi-microgrids network," Applied Energy, Elsevier, vol. 323(C).
    16. Kell, Nicholas P. & van der Weijde, Adriaan Hendrik & Li, Liang & Santibanez-Borda, Ernesto & Pillai, Ajit C., 2023. "Simulating offshore wind contract for difference auctions to prepare bid strategies," Applied Energy, Elsevier, vol. 334(C).
    17. Wang, Zhuo & Hou, Hui & Zhao, Bo & Zhang, Leiqi & Shi, Ying & Xie, Changjun, 2024. "Risk-averse stochastic capacity planning and P2P trading collaborative optimization for multi-energy microgrids considering carbon emission limitations: An asymmetric Nash bargaining approach," Applied Energy, Elsevier, vol. 357(C).
    18. Sun, Lu & Xu, Qingshan & Song, Yun, 2022. "Game-theoretic genetic-priced optimization of multiple microgrids under uncertainties," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    19. Wu, Ying & Wu, Yanpeng & Cimen, Halil & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Towards collective energy Community: Potential roles of microgrid and blockchain to go beyond P2P energy trading," Applied Energy, Elsevier, vol. 314(C).
    20. Mewafy, Abdelrahman & Ismael, Islam & Kaddah, Sahar S. & Hu, Weihao & Chen, Zhe & Abulanwar, Sayed, 2024. "Optimal design of multiuse hybrid microgrids power by green hydrogen–ammonia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7481-:d:675418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.