IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7453-d674822.html
   My bibliography  Save this article

Assessing Maximum Power Point Tracking Intelligent Techniques on a PV System with a Buck–Boost Converter

Author

Listed:
  • Maria I. S. Guerra

    (Department of Engineering and Technology, Semi-Arid Federal University, Mossoró 59625-900, Brazil)

  • Fábio M. Ugulino de Araújo

    (Department of Computer and Automation Engineering, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil)

  • Mahmoud Dhimish

    (Department of Electronic Engineering, University of York, York YO10 5DD, UK)

  • Romênia G. Vieira

    (Department of Engineering and Technology, Semi-Arid Federal University, Mossoró 59625-900, Brazil)

Abstract

Classic and intelligent techniques aim to locate and track the maximum power point of photovoltaic (PV) systems, such as perturb and observe (P&O), fuzzy logic (FL), artificial neural networks (ANNs), and adaptive neuro-fuzzy inference systems (ANFISs). This paper proposes and compares three intelligent algorithms for maximum power point tracking (MPPT) control, specifically fuzzy, ANN, and ANFIS. The modeling of a single-diode equivalent circuit-based 3 kWp PV plant was developed and validated to achieve this purpose. Then, the MPPT techniques were designed and applied to control the buck–boost converter’s switching device of the PV plant. All three methods use the ambient conditions as input variables: solar irradiance and ambient temperature. The proposed methodology comprises the study of the dynamic response for tracking the maximum power point and the power generated of the PV systems, and it was compared to the classic P&O technique under varying ambient conditions. We observed that the intelligent techniques outperformed the classic P&O method in tracking speed, tracking accuracy, and reducing oscillation around the maximum power point (MPP). The ANN technique was the better control algorithm in energy gain, managing to recover up to 9.9% power.

Suggested Citation

  • Maria I. S. Guerra & Fábio M. Ugulino de Araújo & Mahmoud Dhimish & Romênia G. Vieira, 2021. "Assessing Maximum Power Point Tracking Intelligent Techniques on a PV System with a Buck–Boost Converter," Energies, MDPI, vol. 14(22), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7453-:d:674822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reshma Gopi, R. & Sreejith, S., 2018. "Converter topologies in photovoltaic applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1-14.
    2. Youssef, Ayman & El-Telbany, Mohammed & Zekry, Abdelhalim, 2017. "The role of artificial intelligence in photo-voltaic systems design and control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 72-79.
    3. Belhachat, Faiza & Larbes, Cherif, 2018. "A review of global maximum power point tracking techniques of photovoltaic system under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 513-553.
    4. Jaw-Kuen Shiau & Min-Yi Lee & Yu-Chen Wei & Bo-Chih Chen, 2014. "Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies," Energies, MDPI, vol. 7(8), pages 1-20, August.
    5. Romênia G. Vieira & Fábio M. U. de Araújo & Mahmoud Dhimish & Maria I. S. Guerra, 2020. "A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules," Energies, MDPI, vol. 13(10), pages 1-21, May.
    6. Shazly A. Mohamed & Mohamed A. Tolba & Ayman A. Eisa & Ali M. El-Rifaie, 2021. "Comprehensive Modeling and Control of Grid-Connected Hybrid Energy Sources Using MPPT Controller," Energies, MDPI, vol. 14(16), pages 1-22, August.
    7. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    8. Ahmed, Jubaer & Salam, Zainal, 2014. "A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability," Applied Energy, Elsevier, vol. 119(C), pages 118-130.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Djamila Rekioua & Khoudir Kakouche & Abdulrahman Babqi & Zahra Mokrani & Adel Oubelaid & Toufik Rekioua & Abdelghani Azil & Enas Ali & Ali H. Kasem Alaboudy & Saad A. Mohamed Abdelwahab, 2023. "Optimized Power Management Approach for Photovoltaic Systems with Hybrid Battery-Supercapacitor Storage," Sustainability, MDPI, vol. 15(19), pages 1-30, September.
    2. Amit Kumar Sharma & Rupendra Kumar Pachauri & Sushabhan Choudhury & Ahmad Faiz Minai & Majed A. Alotaibi & Hasmat Malik & Fausto Pedro García Márquez, 2023. "Role of Metaheuristic Approaches for Implementation of Integrated MPPT-PV Systems: A Comprehensive Study," Mathematics, MDPI, vol. 11(2), pages 1-48, January.
    3. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Waleed Al Abri & Rashid Al Abri & Hassan Yousef & Amer Al-Hinai, 2021. "A Simple Method for Detecting Partial Shading in PV Systems," Energies, MDPI, vol. 14(16), pages 1-12, August.
    3. Fahd A. Alturki & Abdullrahman A. Al-Shamma’a & Hassan M. H. Farh, 2020. "Simulations and dSPACE Real-Time Implementation of Photovoltaic Global Maximum Power Extraction under Partial Shading," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    4. Shaowu Li, 2021. "Circuit Parameter Range of Photovoltaic System to Correctly Use the MPP Linear Model of Photovoltaic Cell," Energies, MDPI, vol. 14(13), pages 1-27, July.
    5. Ali Bughneda & Mohamed Salem & Anna Richelli & Dahaman Ishak & Salah Alatai, 2021. "Review of Multilevel Inverters for PV Energy System Applications," Energies, MDPI, vol. 14(6), pages 1-23, March.
    6. Yadav, Anurag Singh & Mukherjee, V., 2021. "Conventional and advanced PV array configurations to extract maximum power under partial shading conditions: A review," Renewable Energy, Elsevier, vol. 178(C), pages 977-1005.
    7. Zhang, Xiaoshun & Li, Shengnan & He, Tingyi & Yang, Bo & Yu, Tao & Li, Haofei & Jiang, Lin & Sun, Liming, 2019. "Memetic reinforcement learning based maximum power point tracking design for PV systems under partial shading condition," Energy, Elsevier, vol. 174(C), pages 1079-1090.
    8. Venkateswari, R. & Sreejith, S., 2019. "Factors influencing the efficiency of photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 376-394.
    9. Mohapatra, Alivarani & Nayak, Byamakesh & Das, Priti & Mohanty, Kanungo Barada, 2017. "A review on MPPT techniques of PV system under partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 854-867.
    10. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    11. Weng-Hooi Tan & Junita Mohamad-Saleh, 2023. "Critical Review on Interrelationship of Electro-Devices in PV Solar Systems with Their Evolution and Future Prospects for MPPT Applications," Energies, MDPI, vol. 16(2), pages 1-37, January.
    12. Celikel, Resat & Yilmaz, Musa & Gundogdu, Ahmet, 2022. "A voltage scanning-based MPPT method for PV power systems under complex partial shading conditions," Renewable Energy, Elsevier, vol. 184(C), pages 361-373.
    13. Ahmad, Muhammad Waseem & Mourshed, Monjur & Rezgui, Yacine, 2018. "Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression," Energy, Elsevier, vol. 164(C), pages 465-474.
    14. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    15. Guo, Lei & Meng, Zhuo & Sun, Yize & Wang, Libiao, 2018. "A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition," Energy, Elsevier, vol. 144(C), pages 501-514.
    16. Yin, Rumeng & He, Jiang, 2023. "Design of a photovoltaic electric bike battery-sharing system in public transit stations," Applied Energy, Elsevier, vol. 332(C).
    17. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    18. Moreira, Hugo Soeiro & Lucas de Souza Silva, João & Gomes dos Reis, Marcos Vinicios & de Bastos Mesquita, Daniel & Kikumoto de Paula, Bruno Henrique & Villalva, Marcelo Gradella, 2021. "Experimental comparative study of photovoltaic models for uniform and partially shading conditions," Renewable Energy, Elsevier, vol. 164(C), pages 58-73.
    19. Yu-Pei Huang & Cheng-En Ye & Xiang Chen, 2018. "A Modified Firefly Algorithm with Rapid Response Maximum Power Point Tracking for Photovoltaic Systems under Partial Shading Conditions," Energies, MDPI, vol. 11(9), pages 1-33, August.
    20. Paula Andrea Ortiz Valencia & Carlos Andres Ramos-Paja, 2015. "Sliding-Mode Controller for Maximum Power Point Tracking in Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 8(11), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7453-:d:674822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.