IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7289-d671696.html
   My bibliography  Save this article

Designing a User-Centric P2P Energy Trading Platform: A Case Study—Higashi-Fuji Demonstration

Author

Listed:
  • Yasuhiro Takeda

    (Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyō, Tokyo 113-8654, Japan
    TRENDE Inc., 1-16-7 Higashikanda, Chiyoda City, Tokyo 101-0031, Japan)

  • Yoichi Nakai

    (TRENDE Inc., 1-16-7 Higashikanda, Chiyoda City, Tokyo 101-0031, Japan)

  • Tadatoshi Senoo

    (TRENDE Inc., 1-16-7 Higashikanda, Chiyoda City, Tokyo 101-0031, Japan)

  • Kenji Tanaka

    (Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyō, Tokyo 113-8654, Japan)

Abstract

Peer-to-peer (P2P) energy trading is gaining attention as a technology to effectively handle already existing distributed energy resources (DER). In order to manage a large number of DER, it is necessary to increase the number of P2P energy trading participants. For that, designing incentives for participants to engage in P2P energy trading is important. This paper describes a user-centric cooperative mechanism that enhances user participation in P2P energy trading. The key components of this incentive for participants to engage in P2P energy trading are described and evaluated in this study. The goal of the proposal is to make it possible to conduct economic transactions while reflecting the preferences of the traders in the ordering process, making it possible to conduct transactions with minimal effort. As a case study, the Higashi-Fuji demonstration experiment conducted in Japan verified the proposed mechanism. In this experiment, 19 households and 9 plugin hybrid vehicles (PHV) were evaluated. As a result, the study confirmed that prosumers were able to sell their surplus electricity, and consumers were able to preferentially purchase renewable energy when it was available. In addition, those trades were made economically. All trades were made automatically, and this efficiency allowed the users to continue using the P2P energy trading.

Suggested Citation

  • Yasuhiro Takeda & Yoichi Nakai & Tadatoshi Senoo & Kenji Tanaka, 2021. "Designing a User-Centric P2P Energy Trading Platform: A Case Study—Higashi-Fuji Demonstration," Energies, MDPI, vol. 14(21), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7289-:d:671696
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7289/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7289/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Keck, Felix & Lenzen, Manfred & Vassallo, Anthony & Li, Mengyu, 2019. "The impact of battery energy storage for renewable energy power grids in Australia," Energy, Elsevier, vol. 173(C), pages 647-657.
    2. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2021. "Peer-to-peer energy trading: A review of the literature," Applied Energy, Elsevier, vol. 283(C).
    3. Guerrero, Jaysson & Sok, Bunyim & Chapman, Archie C. & Verbič, Gregor, 2021. "Electrical-distance driven peer-to-peer energy trading in a low-voltage network," Applied Energy, Elsevier, vol. 287(C).
    4. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    5. Diouf, Boucar & Pode, Ramchandra, 2015. "Potential of lithium-ion batteries in renewable energy," Renewable Energy, Elsevier, vol. 76(C), pages 375-380.
    6. Lin, Jason & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Comparative analysis of auction mechanisms and bidding strategies for P2P solar transactive energy markets," Applied Energy, Elsevier, vol. 255(C).
    7. Zhang, Chenghua & Wu, Jianzhong & Zhou, Yue & Cheng, Meng & Long, Chao, 2018. "Peer-to-Peer energy trading in a Microgrid," Applied Energy, Elsevier, vol. 220(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnob Das & Susmita Datta Peu & Md. Abdul Mannan Akanda & Abu Reza Md. Towfiqul Islam, 2023. "Peer-to-Peer Energy Trading Pricing Mechanisms: Towards a Comprehensive Analysis of Energy and Network Service Pricing (NSP) Mechanisms to Get Sustainable Enviro-Economical Energy Sector," Energies, MDPI, vol. 16(5), pages 1-27, February.
    2. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Shama Naz Islam, 2024. "A Review of Peer-to-Peer Energy Trading Markets: Enabling Models and Technologies," Energies, MDPI, vol. 17(7), pages 1-18, April.
    4. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    5. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    6. Zheng, Boshen & Wei, Wei & Chen, Yue & Wu, Qiuwei & Mei, Shengwei, 2022. "A peer-to-peer energy trading market embedded with residential shared energy storage units," Applied Energy, Elsevier, vol. 308(C).
    7. Bidan Zhang & Yang Du & Xiaoyang Chen & Eng Gee Lim & Lin Jiang & Ke Yan, 2022. "Potential Benefits for Residential Building with Photovoltaic Battery System Participation in Peer-to-Peer Energy Trading," Energies, MDPI, vol. 15(11), pages 1-21, May.
    8. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Integrated prosumers–DSO approach applied in peer-to-peer energy and reserve tradings considering network constraints," Applied Energy, Elsevier, vol. 317(C).
    9. Wang, Juan & Zheng, Junjun & Yu, Liukai & Goh, Mark & Tang, Yunying & Huang, Yongchao, 2023. "Distributed Reputation-Distance iterative auction system for Peer-To-Peer power trading," Applied Energy, Elsevier, vol. 345(C).
    10. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Forecasting error processing techniques and frequency domain decomposition for forecasting error compensation and renewable energy firming in hybrid systems," Applied Energy, Elsevier, vol. 313(C).
    11. Maarten Evens & Patricia Ercoli & Alessia Arteconi, 2023. "Blockchain-Enabled Microgrids: Toward Peer-to-Peer Energy Trading and Flexible Demand Management," Energies, MDPI, vol. 16(18), pages 1-24, September.
    12. Sara Khan & Uzma Amin & Ahmed Abu-Siada, 2024. "P2P Energy Trading of EVs Using Blockchain Technology in Centralized and Decentralized Networks: A Review," Energies, MDPI, vol. 17(9), pages 1-17, April.
    13. Zare, Amir & Mehdinejad, Mehdi & Abedi, Mehrdad, 2024. "Designing a decentralized peer-to-peer energy market for an active distribution network considering loss and transaction fee allocation, and fairness," Applied Energy, Elsevier, vol. 358(C).
    14. Hu, Qian & Zhu, Ziqing & Bu, Siqi & Wing Chan, Ka & Li, Fangxing, 2021. "A multi-market nanogrid P2P energy and ancillary service trading paradigm: Mechanisms and implementations," Applied Energy, Elsevier, vol. 293(C).
    15. McIlwaine, Neil & Foley, Aoife M. & Best, Robert & Morrow, D. John & Kez, Dlzar Al, 2023. "Modelling the effect of distributed battery energy storage in an isolated power system," Energy, Elsevier, vol. 263(PC).
    16. Cortade, Thomas & Poudou, Jean-Christophe, 2022. "Peer-to-peer energy platforms: Incentives for prosuming," Energy Economics, Elsevier, vol. 109(C).
    17. Caixiang Fan & Hamzeh Khazaei & Petr Musilek, 2024. "BPET: A Unified Blockchain-Based Framework for Peer-to-Peer Energy Trading," Future Internet, MDPI, vol. 16(5), pages 1-19, May.
    18. Rodrigues, Daniel L. & Ye, Xianming & Xia, Xiaohua & Zhu, Bing, 2020. "Battery energy storage sizing optimisation for different ownership structures in a peer-to-peer energy sharing community," Applied Energy, Elsevier, vol. 262(C).
    19. Bochun Zhan & Changsen Feng & Zhemin Lin & Xiaoyu Shao & Fushuan Wen, 2023. "Peer-to-Peer Energy Trading among Prosumers with Voltage Regulation Services Provision," Energies, MDPI, vol. 16(14), pages 1-22, July.
    20. Filipe Bandeiras & Álvaro Gomes & Mário Gomes & Paulo Coelho, 2023. "Exploring Energy Trading Markets in Smart Grid and Microgrid Systems and Their Implications for Sustainability in Smart Cities," Energies, MDPI, vol. 16(2), pages 1-41, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7289-:d:671696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.