IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7094-d668660.html
   My bibliography  Save this article

The Morphology and Differentiation of the Content of International Debate on Renewable Energy. A Bibliometric Analysis of Web of Science, Scopus, and Twitter

Author

Listed:
  • Katarzyna Sanak-Kosmowska

    (Department of Marketing, Cracow University of Economics, 31-510 Cracow, Poland)

  • Jan W. Wiktor

    (Department of Marketing, Cracow University of Economics, 31-510 Cracow, Poland)

Abstract

This paper aims to identify a bibliometric profile, presenting the results of research and debates in social media on renewable energy sources (RES). It analyses current scientific publications (2019–2021) and tweets posted in July 2021 by international Twitter users. The subject of the study is an analysis of key words in articles, the results of research, and the content of tweets (hashtags #renewables) related to renewable energy (RE) as well as an assessment of the morphology of content and the degree of its differentiation in the analysed data resources. The conducted analysis facilitates an assessment of similarities of key words in scientific papers and the content of debates in social media—on Twitter, a global platform. In its methodological dimension, the work is based on a bibliometric analysis (articles in both bases) and the analysis of Twitter data. This methodological approach allows for identifying the main trend, profile, and bibliometric characteristics of scientific papers representing two streams of information: articles in bases and the content (hashtags) of authentic and unguided international debates on Twitter. The focus on this platform results from a great popularity of social media as a platform for social debate, expressing comments and opinions and providing an opportunity to gain understanding of social, cultural, and environmental issues related to renewable energy sources from the perspective of social media participants. The objective of the paper and the proposed methodological approach relates to a knowledge gap in the area of renewable energy, and, more specifically, climate change and sustainable development.

Suggested Citation

  • Katarzyna Sanak-Kosmowska & Jan W. Wiktor, 2021. "The Morphology and Differentiation of the Content of International Debate on Renewable Energy. A Bibliometric Analysis of Web of Science, Scopus, and Twitter," Energies, MDPI, vol. 14(21), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7094-:d:668660
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7094/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7094/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scarpa, Riccardo & Willis, Ken, 2010. "Willingness-to-pay for renewable energy: Primary and discretionary choice of British households' for micro-generation technologies," Energy Economics, Elsevier, vol. 32(1), pages 129-136, January.
    2. Aria, Massimo & Cuccurullo, Corrado, 2017. "bibliometrix: An R-tool for comprehensive science mapping analysis," Journal of Informetrics, Elsevier, vol. 11(4), pages 959-975.
    3. Harjanne, Atte & Korhonen, Janne M., 2019. "Abandoning the concept of renewable energy," Energy Policy, Elsevier, vol. 127(C), pages 330-340.
    4. Sanderink, Lisa & Nasiritousi, Naghmeh, 2020. "How institutional interactions can strengthen effectiveness: The case of multi-stakeholder partnerships for renewable energy," Energy Policy, Elsevier, vol. 141(C).
    5. Theodoros Anagnostopoulos & Grigorios L. Kyriakopoulos & Stamatios Ntanos & Eleni Gkika & Sofia Asonitou, 2020. "Intelligent Predictive Analytics for Sustainable Business Investment in Renewable Energy Sources," Sustainability, MDPI, vol. 12(7), pages 1-11, April.
    6. Chen, Hua-Qi & Wang, Xiuping & He, Li & Chen, Ping & Wan, Yuehua & Yang, Lingyun & Jiang, Shuian, 2016. "Chinese energy and fuels research priorities and trend: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 966-975.
    7. He, Li & Zhang, Shiyue & Chen, Yizhong & Ren, Lixia & Li, Jing, 2018. "Techno-economic potential of a renewable energy-based microgrid system for a sustainable large-scale residential community in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 631-641.
    8. Drew Shindell & Greg Faluvegi & Karl Seltzer & Cary Shindell, 2018. "Quantified, localized health benefits of accelerated carbon dioxide emissions reductions," Nature Climate Change, Nature, vol. 8(4), pages 291-295, April.
    9. Dan M. Kahan & Ellen Peters & Maggie Wittlin & Paul Slovic & Lisa Larrimore Ouellette & Donald Braman & Gregory Mandel, 2012. "The polarizing impact of science literacy and numeracy on perceived climate change risks," Nature Climate Change, Nature, vol. 2(10), pages 732-735, October.
    10. Andrzej Lis & Agata Sudolska & Ilona Pietryka & Adam Kozakiewicz, 2020. "Cloud Computing and Energy Efficiency: Mapping the Thematic Structure of Research," Energies, MDPI, vol. 13(16), pages 1-21, August.
    11. David E. H. J. Gernaat & Harmen Sytze Boer & Vassilis Daioglou & Seleshi G. Yalew & Christoph Müller & Detlef P. Vuuren, 2021. "Climate change impacts on renewable energy supply," Nature Climate Change, Nature, vol. 11(2), pages 119-125, February.
    12. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    13. Dalia Streimikiene & Grigorios L. Kyriakopoulos & Vidas Lekavicius & Indre Siksnelyte-Butkiene, 2021. "Energy Poverty and Low Carbon Just Energy Transition: Comparative Study in Lithuania and Greece," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 158(1), pages 319-371, November.
    14. Potrč, Sanja & Čuček, Lidija & Martin, Mariano & Kravanja, Zdravko, 2021. "Sustainable renewable energy supply networks optimization – The gradual transition to a renewable energy system within the European Union by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    15. Ciechanowski, Leon & Jemielniak, Dariusz & Gloor, Peter A., 2020. "TUTORIAL: AI research without coding: The art of fighting without fighting: Data science for qualitative researchers," Journal of Business Research, Elsevier, vol. 117(C), pages 322-330.
    16. Zofia Gródek-Szostak & Marcin Suder & Rafał Kusa & Anna Szeląg-Sikora & Joanna Duda & Marcin Niemiec, 2020. "Renewable Energy Promotion Instruments Used by Innovation Brokers in a Technology Transfer Network. Case Study of the Enterprise Europe Network," Energies, MDPI, vol. 13(21), pages 1-13, November.
    17. Cynthia Chew & Gunther Eysenbach, 2010. "Pandemics in the Age of Twitter: Content Analysis of Tweets during the 2009 H1N1 Outbreak," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-13, November.
    18. Katarzyna Grzybowska, 2021. "Identification and Classification of Global Theoretical Trends and Supply Chain Development Directions," Energies, MDPI, vol. 14(15), pages 1-19, July.
    19. Haas, Reinhard & Panzer, Christian & Resch, Gustav & Ragwitz, Mario & Reece, Gemma & Held, Anne, 2011. "A historical review of promotion strategies for electricity from renewable energy sources in EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1003-1034, February.
    20. Giovanni Ferrari & Andrea Pezzuolo & Abdul-Sattar Nizami & Francesco Marinello, 2020. "Bibliometric Analysis of Trends in Biomass for Bioenergy Research," Energies, MDPI, vol. 13(14), pages 1-21, July.
    21. Yu, Hao & Wei, Yi-Ming & Tang, Bao-Jun & Mi, Zhifu & Pan, Su-Yan, 2016. "Assessment on the research trend of low-carbon energy technology investment: A bibliometric analysis," Applied Energy, Elsevier, vol. 184(C), pages 960-970.
    22. Carmen de la Cruz-Lovera & Alberto-Jesus Perea-Moreno & José Luis de la Cruz-Fernández & Francisco G. Montoya & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2019. "Analysis of Research Topics and Scientific Collaborations in Energy Saving Using Bibliometric Techniques and Community Detection," Energies, MDPI, vol. 12(10), pages 1-23, May.
    23. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    24. Mao, Guozhu & Liu, Xi & Du, Huibin & Zuo, Jian & Wang, Linyuan, 2015. "Way forward for alternative energy research: A bibliometric analysis during 1994–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 276-286.
    25. Wang, Yuan & Lai, Nan & Zuo, Jian & Chen, Guanyi & Du, Huibin, 2016. "Characteristics and trends of research on waste-to-energy incineration: A bibliometric analysis, 1999–2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 95-104.
    26. Barrett, Adam B., 2018. "Stability of Zero-growth Economics Analysed with a Minskyan Model," Ecological Economics, Elsevier, vol. 146(C), pages 228-239.
    27. Mario Ragwitz & Simone Steinhilber, 2014. "Effectiveness and efficiency of support schemes for electricity from renewable energy sources," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(2), pages 213-229, March.
    28. Daniel A. Chapman & Brian Lickel & Ezra M. Markowitz, 2017. "Reassessing emotion in climate change communication," Nature Climate Change, Nature, vol. 7(12), pages 850-852, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bartolomé Marco-Lajara & Javier Martínez-Falcó & Eduardo Sánchez-García & Luis A. Millan-Tudela, 2023. "Analyzing the Role of Renewable Energy in Meeting the Sustainable Development Goals: A Bibliometric Analysis," Energies, MDPI, vol. 16(7), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imran, Muhammad & Haglind, Fredrik & Asim, Muhammad & Zeb Alvi, Jahan, 2018. "Recent research trends in organic Rankine cycle technology: A bibliometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 552-562.
    2. Wenjie Zhang & Hongping Yuan, 2019. "A Bibliometric Analysis of Energy Performance Contracting Research from 2008 to 2018," Sustainability, MDPI, vol. 11(13), pages 1-23, June.
    3. Rongrong Li & Xuefeng Wang, 2019. "Imbalances between the Quantity and Quality of China’s Solar Energy Research," Sustainability, MDPI, vol. 11(3), pages 1-15, January.
    4. Maria Lourdes Ordoñez Olivo & Zoltán Lakner, 2023. "Shaping the Knowledge Base of Bioeconomy Sectors Development in Latin American and Caribbean Countries: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    5. Juan F. Prados-Castillo & Miguel Ángel Solano-Sánchez & Pilar Guaita Fernández & José Manuel Guaita Martínez, 2023. "Potential of the Crypto Economy in Financial Management and Fundraising for Tourism," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    6. Gour Gobinda Goswami & Tahmid Labib, 2022. "Modeling COVID-19 Transmission Dynamics: A Bibliometric Review," IJERPH, MDPI, vol. 19(21), pages 1-19, October.
    7. Wirapong Chansanam & Chunqiu Li, 2022. "Scientometrics of Poverty Research for Sustainability Development: Trend Analysis of the 1964–2022 Data through Scopus," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    8. Zhichao Wang & Valentin Zelenyuk, 2021. "Performance Analysis of Hospitals in Australia and its Peers: A Systematic Review," CEPA Working Papers Series WP012021, School of Economics, University of Queensland, Australia.
    9. Abdulaziz I. Almulhim & Simon Elias Bibri & Ayyoob Sharifi & Shakil Ahmad & Khalid Mohammed Almatar, 2022. "Emerging Trends and Knowledge Structures of Urbanization and Environmental Sustainability: A Regional Perspective," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    10. Jin Su & Mo Wang & Mohd Adib Mohammad Razi & Norlida Mohd Dom & Noralfishah Sulaiman & Lai-Wai Tan, 2023. "A Bibliometric Review of Nature-Based Solutions on Urban Stormwater Management," Sustainability, MDPI, vol. 15(9), pages 1-23, April.
    11. Khan, Ashraf & Goodell, John W. & Hassan, M. Kabir & Paltrinieri, Andrea, 2022. "A bibliometric review of finance bibliometric papers," Finance Research Letters, Elsevier, vol. 47(PA).
    12. Cinzia Daraio & Simone Di Leo & Loet Leydesdorff, 2022. "Using the Leiden Rankings as a Heuristics: Evidence from Italian universities in the European landscape," LEM Papers Series 2022/08, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    13. Li, Jinke & Liu, Guy & Shao, Jing, 2020. "Understanding the ROC transfer payment in the renewable obligation with the recycling mechanism in the United Kingdom," Energy Economics, Elsevier, vol. 87(C).
    14. Zamani, Mehdi & Yalcin, Haydar & Naeini, Ali Bonyadi & Zeba, Gordana & Daim, Tugrul U, 2022. "Developing metrics for emerging technologies: identification and assessment," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    15. Abidin Kemeç & Ayşenur Tarakcıoglu Altınay, 2023. "Sustainable Energy Research Trend: A Bibliometric Analysis Using VOSviewer, RStudio Bibliometrix, and CiteSpace Software Tools," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    16. Clemente Rodríguez-Sabiote & Álvaro Manuel Úbeda-Sánchez & Oswaldo Lorenzo-Quiles & José Álvarez-Rodríguez, 2023. "Knowledge structures of scientific production on COVID-19 in the sphere of education: the case of publications indexed in the Web of Science during 2020," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(5), pages 4285-4305, October.
    17. Dejian Yu & Sun Meng, 2018. "An overview of biomass energy research with bibliometric indicators," Energy & Environment, , vol. 29(4), pages 576-590, June.
    18. Shiwangi Singh & Sanjay Dhir, 2019. "Structured review using TCCM and bibliometric analysis of international cause-related marketing, social marketing, and innovation of the firm," International Review on Public and Nonprofit Marketing, Springer;International Association of Public and Non-Profit Marketing, vol. 16(2), pages 335-347, December.
    19. Ana Luiza Carvalho Ferrer & Antonio Márcio Tavares Thomé, 2023. "Carbon Emissions in Transportation: A Synthesis Framework," Sustainability, MDPI, vol. 15(11), pages 1-28, May.
    20. Ivone de Bem Oliveira & Rhewter Nunes & Lucia Mattiello & Stela Barros-Ribeiro & Isabela Pavanelli Souza & Alexandre Siqueira Guedes Coelho & Rosane Garcia Collevatti, 2019. "Research and partnership in studies of sugarcane using molecular markers: a scientometric approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 335-355, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7094-:d:668660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.