IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7019-d665438.html
   My bibliography  Save this article

Analysis of the Possibilities of Selective Detection of a Single Line-to-Ground Fault in a Medium Voltage Network with Isolated Neutral

Author

Listed:
  • Dumitru Toader

    (Department of Fundamental Physics for Engineers, Politehnica University, 300006 Timisoara, Romania)

  • Maria Vintan

    (Department of Computer Sciences and Electrical Engineering, Lucian Blaga University, 550024 Sibiu, Romania)

  • Claudiu Solea

    (Department of Fundamental Physics for Engineers, Politehnica University, 300006 Timisoara, Romania)

  • Daniela Vesa

    (Department of Fundamental Physics for Engineers, Politehnica University, 300006 Timisoara, Romania)

  • Marian Greconici

    (Department of Fundamental Physics for Engineers, Politehnica University, 300006 Timisoara, Romania)

Abstract

The paper analyses how the characteristics of the medium-voltage network with insulated neutral and the conditions under which the single line-to-ground fault occurs (insulation condition and value of the fault resistance) influence the zero-sequence components of the voltage of the transformer station medium-voltage bus bar, the fault current, the currents of the faulted line and the currents of the other non-faulted power lines connected to the transformer station bus bars. Assuming the waveform of the medium voltage bus voltages in the transformer station is known, the influence of the fault resistance on the total distortion coefficient of the fault current is analysed. This establishes the conditions under which a single line-to-ground fault can be detected by controlling the total distortion coefficient of the fault current and the currents of the fault-free lines. It also examines the conditions under which a single line-to-ground fault can be selectively detected by checking the effective value and direction of flow of the zero-sequence currents of the medium-voltage lines during the fault. The results obtained by the calculation were verified experimentally in the medium voltage network considered in the study. The acceptable differences, considering the degree of accuracy with which the parameters of a medium voltage network are known, between the results obtained by calculation and those obtained experimentally show that the simplifying assumptions accepted for the mathematical models used in the calculation are correct.

Suggested Citation

  • Dumitru Toader & Maria Vintan & Claudiu Solea & Daniela Vesa & Marian Greconici, 2021. "Analysis of the Possibilities of Selective Detection of a Single Line-to-Ground Fault in a Medium Voltage Network with Isolated Neutral," Energies, MDPI, vol. 14(21), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7019-:d:665438
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7019/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7019/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yaojing Tang & Yongle Chang & Jinrui Tang & Bin Xu & Mingkang Ye & Hongbo Yang, 2021. "A Novel Faulty Phase Selection Method for Single-Phase-to-Ground Fault in Distribution System Based on Transient Current Similarity Measurement," Energies, MDPI, vol. 14(15), pages 1-19, August.
    2. Soon-Ryul Nam & Woong-Hie Ko & Sopheap Key & Sang-Hee Kang & Nam-Ho Lee, 2021. "IEC 61850-Based Centralized Protection against Single Line-To-Ground Faults in Ungrounded Distribution Systems," Energies, MDPI, vol. 14(3), pages 1-15, January.
    3. Dumitru Toader & Marian Greconici & Daniela Vesa & Maria Vintan & Claudiu Solea, 2021. "Analysis of the Influence of the Insulation Parameters of Medium Voltage Electrical Networks and of the Petersen Coil on the Single-Phase-to-Ground Fault Current," Energies, MDPI, vol. 14(5), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartosz Olejnik & Beata Zięba, 2022. "Improving the Efficiency of Earth Fault Detection by Fault Current Passage Indicators in Medium-Voltage Compensated Overhead Networks," Energies, MDPI, vol. 15(23), pages 1-19, November.
    2. Dumitru Toader & Maria Vintan, 2023. "Mathematical Models of the Phase Voltages of High-, Medium- and Low-Voltage Busbars in a Substation during a Phase-to-Ground Fault on High-Voltage Busbars," Mathematics, MDPI, vol. 11(13), pages 1-30, July.
    3. Francesco Bonavolontà & Vincenzo Caragallo & Alessandro Fatica & Annalisa Liccardo & Adriano Masone & Claudio Sterle, 2021. "Optimization of IEDs Position in MV Smart Grids through Integer Linear Programming," Energies, MDPI, vol. 14(11), pages 1-16, June.
    4. Haotian Ge & Bingyin Xu & Xinhui Zhang & Yongjian Bi & Zida Zhao, 2021. "Feeder Topology Configuration and Application Based on IEC 61850," Energies, MDPI, vol. 14(14), pages 1-13, July.
    5. Krzysztof Kuliński & Adam Heyduk, 2024. "Ground Fault in Medium-Voltage Power Networks with an Isolated Neutral Point: Spectral and Wavelet Analysis of Selected Cases in an Example Industrial Network Modeled in the ATP-EMTP Package," Energies, MDPI, vol. 17(7), pages 1-25, March.
    6. Denis Ustinov & Aleksander Nazarychev & Denis Pelenev & Kirill Babyr & Andrey Pugachev, 2023. "Investigation of the Effect of Current Protections in Conditions of Single-Phase Ground Fault through Transient Resistance in the Electrical Networks of Mining Enterprises," Energies, MDPI, vol. 16(9), pages 1-15, April.
    7. Yu He & Xinhui Zhang & Wenhao Wu & Jun Zhang & Wenyuan Bai & Aiyu Guo & Yu Chen, 2022. "Faulty Line Selection Method Based on Comprehensive Dynamic Time Warping Distance in a Flexible Grounding System," Energies, MDPI, vol. 15(2), pages 1-16, January.
    8. Diomar A. C. Lima & Daniel P. Bernardon & Adriano P. Morais & Aécio L. Oliveira & Wagner S. Hokama & Júlia B. R. Conceição & Ângelo F. Sartori, 2022. "Review of Bus Differential Protection Using IEC 61850," Energies, MDPI, vol. 15(24), pages 1-15, December.
    9. Yaojing Tang & Yongle Chang & Jinrui Tang & Bin Xu & Mingkang Ye & Hongbo Yang, 2021. "A Novel Faulty Phase Selection Method for Single-Phase-to-Ground Fault in Distribution System Based on Transient Current Similarity Measurement," Energies, MDPI, vol. 14(15), pages 1-19, August.
    10. Annalisa Liccardo & Francesco Bonavolontà & Ignazio Romano & Rosario Schiano Lo Moriello, 2021. "Optimization and Performance Assessment of a Logic Selectivity Solution Based on LoRa Communication," Energies, MDPI, vol. 14(21), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7019-:d:665438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.