IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v181y2016icp342-356.html
   My bibliography  Save this article

Comparison of compressed air energy storage process in aquifers and caverns based on the Huntorf CAES plant

Author

Listed:
  • Guo, Chaobin
  • Pan, Lehua
  • Zhang, Keni
  • Oldenburg, Curtis M.
  • Li, Cai
  • Li, Yi

Abstract

CAESA (compressed air energy storage in aquifers) attracts more and more attention as the increase need of large scale energy storage. The compassion of CAESA and CAESC (compressed air energy storage in caverns) can help on understanding the performance of CAESA, since there is no on running CAESA project. In order to investigate the detail thermodynamic process, integrated wellbore-reservoir (cavern or aquifer) simulations of CAES (compressed air energy storage) are carried out based on parameters of the Huntorf CAES plant. Reasonable matches between monitored data and simulated results are obtained for the Huntorf cavern systems in the wellbore and cavern regions. In this study, the hydrodynamic and thermodynamic behaviors of CAES in cavern and aquifer systems are investigated, such as pressure and temperature distribution and variation in both the wellbore and cavern regions of the CAES systems. Performances of CAESA are investigated with numerical models and compared with the performances of CAESC. The comparisons of CAESC and CAESA indicate that the pressure variation in CAESA shows a wider variation range than that in CAESC, while the temperature shows a smooth variation due to the large grain specific heat of the grains in the porous media. The simulation results confirm that the CAES can be achieved in aquifers, and further that the performance of energy storage in aquifers can be similar to or better than CAESC, if the aquifers have appropriate reservoir properties, which means the gas bubble can be well developed in an aquifer with such properties and the aquifer should have closed or semi-closed boundaries. The impacts of gas-bubble volume, formation permeability, and aquifer boundary permeability on storage efficiency are investigated and the simulation results indicate that the increase of gas bubble volume and permeability can improve the efficiency, but the effect is not significant. The gas bubble boundary permeability has a small effect on the energy efficiency of the sustainable daily cycle but can significantly affect total sustainable cycle times. The analysis of thermodynamic behaviors in CAESA suggests that more attention should be paid to the heat storage, reservoir properties and two-phase flow processes.

Suggested Citation

  • Guo, Chaobin & Pan, Lehua & Zhang, Keni & Oldenburg, Curtis M. & Li, Cai & Li, Yi, 2016. "Comparison of compressed air energy storage process in aquifers and caverns based on the Huntorf CAES plant," Applied Energy, Elsevier, vol. 181(C), pages 342-356.
  • Handle: RePEc:eee:appene:v:181:y:2016:i:c:p:342-356
    DOI: 10.1016/j.apenergy.2016.08.105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916312028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benitez, Liliana E. & Benitez, Pablo C. & van Kooten, G. Cornelis, 2008. "The economics of wind power with energy storage," Energy Economics, Elsevier, vol. 30(4), pages 1973-1989, July.
    2. Tessier, Michael J. & Floros, Michael C. & Bouzidi, Laziz & Narine, Suresh S., 2016. "Exergy analysis of an adiabatic compressed air energy storage system using a cascade of phase change materials," Energy, Elsevier, vol. 106(C), pages 528-534.
    3. Drury, Easan & Denholm, Paul & Sioshansi, Ramteen, 2011. "The value of compressed air energy storage in energy and reserve markets," Energy, Elsevier, vol. 36(8), pages 4959-4973.
    4. Wang, Sixian & Zhang, Xuelin & Yang, Luwei & Zhou, Yuan & Wang, Junjie, 2016. "Experimental study of compressed air energy storage system with thermal energy storage," Energy, Elsevier, vol. 103(C), pages 182-191.
    5. Christoph Jakiel & Stefan Zunft & Andreas Nowi, 2007. "Adiabatic compressed air energy storage plants for efficient peak load power supply from wind energy: the European project AA-CAES," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 5(3), pages 296-306.
    6. Peng, Hao & Li, Rui & Ling, Xiang & Dong, Huihua, 2015. "Modeling on heat storage performance of compressed air in a packed bed system," Applied Energy, Elsevier, vol. 160(C), pages 1-9.
    7. Kantharaj, Bharath & Garvey, Seamus & Pimm, Andrew, 2015. "Compressed air energy storage with liquid air capacity extension," Applied Energy, Elsevier, vol. 157(C), pages 152-164.
    8. Luo, Xing & Wang, Jihong & Krupke, Christopher & Wang, Yue & Sheng, Yong & Li, Jian & Xu, Yujie & Wang, Dan & Miao, Shihong & Chen, Haisheng, 2016. "Modelling study, efficiency analysis and optimisation of large-scale Adiabatic Compressed Air Energy Storage systems with low-temperature thermal storage," Applied Energy, Elsevier, vol. 162(C), pages 589-600.
    9. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    10. Hartmann, Niklas & Vöhringer, O. & Kruck, C. & Eltrop, L., 2012. "Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations," Applied Energy, Elsevier, vol. 93(C), pages 541-548.
    11. Guo, Chaobin & Zhang, Keni & Li, Cai & Wang, Xiaoyu, 2016. "Modelling studies for influence factors of gas bubble in compressed air energy storage in aquifers," Energy, Elsevier, vol. 107(C), pages 48-59.
    12. Safaei, Hossein & Keith, David, 2014. "Compressed air energy storage with waste heat export: An Alberta case study," Scholarly Articles 13489207, Harvard Kennedy School of Government.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Chaobin & Zhang, Keni & Pan, Lehua & Cai, Zuansi & Li, Cai & Li, Yi, 2017. "Numerical investigation of a joint approach to thermal energy storage and compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 203(C), pages 948-958.
    2. Emiliano Borri & Alessio Tafone & Gabriele Comodi & Alessandro Romagnoli & Luisa F. Cabeza, 2022. "Compressed Air Energy Storage—An Overview of Research Trends and Gaps through a Bibliometric Analysis," Energies, MDPI, vol. 15(20), pages 1-21, October.
    3. He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
    4. Zhou, Qian & Du, Dongmei & Lu, Chang & He, Qing & Liu, Wenyi, 2019. "A review of thermal energy storage in compressed air energy storage system," Energy, Elsevier, vol. 188(C).
    5. Zhan, Junpeng & Ansari, Osama Aslam & Liu, Weijia & Chung, C.Y., 2019. "An accurate bilinear cavern model for compressed air energy storage," Applied Energy, Elsevier, vol. 242(C), pages 752-768.
    6. Courtois, Nicolas & Najafiyazdi, Mostafa & Lotfalian, Reza & Boudreault, Richard & Picard, Mathieu, 2021. "Analytical expression for the evaluation of multi-stage adiabatic-compressed air energy storage (A-CAES) systems cycle efficiency," Applied Energy, Elsevier, vol. 288(C).
    7. Peng, Hao & Yang, Yu & Li, Rui & Ling, Xiang, 2016. "Thermodynamic analysis of an improved adiabatic compressed air energy storage system," Applied Energy, Elsevier, vol. 183(C), pages 1361-1373.
    8. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    9. Luo, Xing & Dooner, Mark & He, Wei & Wang, Jihong & Li, Yaowang & Li, Decai & Kiselychnyk, Oleh, 2018. "Feasibility study of a simulation software tool development for dynamic modelling and transient control of adiabatic compressed air energy storage with its electrical power system applications," Applied Energy, Elsevier, vol. 228(C), pages 1198-1219.
    10. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    11. He, Wei & Dooner, Mark & King, Marcus & Li, Dacheng & Guo, Songshan & Wang, Jihong, 2021. "Techno-economic analysis of bulk-scale compressed air energy storage in power system decarbonisation," Applied Energy, Elsevier, vol. 282(PA).
    12. Jidai Wang & Kunpeng Lu & Lan Ma & Jihong Wang & Mark Dooner & Shihong Miao & Jian Li & Dan Wang, 2017. "Overview of Compressed Air Energy Storage and Technology Development," Energies, MDPI, vol. 10(7), pages 1-22, July.
    13. Roos, P. & Haselbacher, A., 2022. "Analytical modeling of advanced adiabatic compressed air energy storage: Literature review and new models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    14. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2019. "Modelling and experimental validation of a small-scale trigenerative compressed air energy storage system," Applied Energy, Elsevier, vol. 239(C), pages 1371-1384.
    15. Li, Yi & Liu, Yaning & Hu, Bin & Li, Yi & Dong, Jiawei, 2020. "Numerical investigation of a novel approach to coupling compressed air energy storage in aquifers with geothermal energy," Applied Energy, Elsevier, vol. 279(C).
    16. Sciacovelli, Adriano & Li, Yongliang & Chen, Haisheng & Wu, Yuting & Wang, Jihong & Garvey, Seamus & Ding, Yulong, 2017. "Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance," Applied Energy, Elsevier, vol. 185(P1), pages 16-28.
    17. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2017. "Sensitivity analysis for the energy performance assessment of hybrid compressed air energy storage systems," Applied Energy, Elsevier, vol. 206(C), pages 1552-1563.
    18. Peng, Hao & Shan, Xuekun & Yang, Yu & Ling, Xiang, 2018. "A study on performance of a liquid air energy storage system with packed bed units," Applied Energy, Elsevier, vol. 211(C), pages 126-135.
    19. Steinmann, Wolf-Dieter, 2017. "Thermo-mechanical concepts for bulk energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 205-219.
    20. Kim, Min Jae & Kim, Tong Seop, 2017. "Feasibility study on the influence of steam injection in the compressed air energy storage system," Energy, Elsevier, vol. 141(C), pages 239-249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:181:y:2016:i:c:p:342-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.