IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6734-d657812.html
   My bibliography  Save this article

Voltage Regulation Performance Evaluation of Distributed Energy Resource Management via Advanced Hardware-in-the-Loop Simulation

Author

Listed:
  • Jing Wang

    (National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Harsha Padullaparti

    (National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Fei Ding

    (National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Murali Baggu

    (National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Martha Symko-Davies

    (National Renewable Energy Laboratory, Golden, CO 80401, USA)

Abstract

This paper evaluates the performance of coordinated control across advanced distribution management systems (ADMS), distributed energy resources (DERs), and distributed energy resource management systems (DERMS) using an advanced hardware-in-the-loop (HIL) platform. This platform provides a realistic laboratory testing environment, including accurate dynamic modeling of a real-world distribution system from a utility partner, real controllers (ADMS and DERMS), physical power hardware (DERs), and standard communications protocols. One grid service—voltage regulation—is evaluated to show the performance of the coordinated grid automation system. The testing results demonstrate that the coordinated DERMS and ADMS system can effectively regulate system voltages within target operation limits using DERs. The realistic laboratory HIL testing results give utilities confidence in adopting the grid automation systems to manage DERs to achieve system-level control and operation objectives (e.g., voltage regulation). This helps utilities mitigate potential risks (e.g., instability) prior to field deployment.

Suggested Citation

  • Jing Wang & Harsha Padullaparti & Fei Ding & Murali Baggu & Martha Symko-Davies, 2021. "Voltage Regulation Performance Evaluation of Distributed Energy Resource Management via Advanced Hardware-in-the-Loop Simulation," Energies, MDPI, vol. 14(20), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6734-:d:657812
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6734/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6734/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jing & Zhao, Changhong & Pratt, Annabelle & Baggu, Murali, 2018. "Design of an advanced energy management system for microgrid control using a state machine," Applied Energy, Elsevier, vol. 228(C), pages 2407-2421.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Amankwah Adu & Alberto Berizzi & Francesco Conte & Fabio D’Agostino & Valentin Ilea & Fabio Napolitano & Tadeo Pontecorvo & Andrea Vicario, 2022. "Power System Stability Analysis of the Sicilian Network in the 2050 OSMOSE Project Scenario," Energies, MDPI, vol. 15(10), pages 1-33, May.
    2. Comden, Joshua & Wang, Jing & Bernstein, Andrey, 2023. "Adaptive primal–dual control for distributed energy resource management," Applied Energy, Elsevier, vol. 351(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yezhen Wu & Yuliang Xu & Jianwei Zhou & Zhen Wang & Haopeng Wang, 2020. "Research on Starting Control Method of New-Energy Vehicle Based on State Machine," Energies, MDPI, vol. 13(23), pages 1-16, November.
    2. Restrepo, Mauricio & Cañizares, Claudio A. & Simpson-Porco, John W. & Su, Peter & Taruc, John, 2021. "Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility," Applied Energy, Elsevier, vol. 290(C).
    3. Luis Santiago Azuara-Grande & Santiago Arnaltes & Jaime Alonso-Martinez & Jose Luis Rodriguez-Amenedo, 2021. "Comparison of Two Energy Management System Strategies for Real-Time Operation of Isolated Hybrid Microgrids," Energies, MDPI, vol. 14(20), pages 1-15, October.
    4. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    5. Guido Cavraro & Tommaso Caldognetto & Ruggero Carli & Paolo Tenti, 2019. "A Master/Slave Approach to Power Flow and Overvoltage Control in Low-Voltage Microgrids," Energies, MDPI, vol. 12(14), pages 1-22, July.
    6. Chen, Scarlett & Kumar, Anikesh & Wong, Wee Chin & Chiu, Min-Sen & Wang, Xiaonan, 2019. "Hydrogen value chain and fuel cells within hybrid renewable energy systems: Advanced operation and control strategies," Applied Energy, Elsevier, vol. 233, pages 321-337.
    7. Comden, Joshua & Wang, Jing & Bernstein, Andrey, 2023. "Adaptive primal–dual control for distributed energy resource management," Applied Energy, Elsevier, vol. 351(C).
    8. Erol, Özge & Başaran Filik, Ümmühan, 2022. "A Stackelberg game approach for energy sharing management of a microgrid providing flexibility to entities," Applied Energy, Elsevier, vol. 316(C).
    9. Danny Espín-Sarzosa & Rodrigo Palma-Behnke & Oscar Núñez-Mata, 2020. "Energy Management Systems for Microgrids: Main Existing Trends in Centralized Control Architectures," Energies, MDPI, vol. 13(3), pages 1-32, January.
    10. Aissa Benhammou & Hamza Tedjini & Mohammed Amine Hartani & Rania M. Ghoniem & Ali Alahmer, 2023. "Accurate and Efficient Energy Management System of Fuel Cell/Battery/Supercapacitor/AC and DC Generators Hybrid Electric Vehicles," Sustainability, MDPI, vol. 15(13), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6734-:d:657812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.