IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6730-d657744.html
   My bibliography  Save this article

Effect of Light Irradiation on the Diffusion Rate of the Charge Carrier Hopping Mechanism in P3HT–ZnO Nanoparticles Studied by μ + SR

Author

Listed:
  • Eka Pratikna

    (Department of Physics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia)

  • Lusi Safriani

    (Department of Physics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia)

  • Nowo Riveli

    (Department of Physics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia)

  • Budi Adiperdana

    (Department of Physics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia)

  • Suci Winarsih

    (Department of Physics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia)

  • Annisa Aprilia

    (Department of Physics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia)

  • Dita Puspita Sari

    (Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma, Saitama 337-8570, Japan)

  • Isao Watanabe

    (Meson Science Laboratory, RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan)

  • Risdiana Risdiana

    (Department of Physics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia)

Abstract

Blended regio-regular P3HT–ZnO nanoparticles are a hybrid material developed as an active layer for hybrid solar cells. The study of the hopping mechanisms and diffusion rates of regio-regular P3HT–ZnO nanoparticles is significant for obtaining intrinsic charge transport properties that provide helpful information for preparing high-performance solar cells. The temperature dependences of the parallel and perpendicular diffusion rates in regio-regular P3HT–ZnO nanoparticles determined from muon spin relaxation measurements were investigated by applying various longitudinal fields. We investigated the effect of light irradiation on the diffusion rates in regio-regular P3HT–ZnO nanoparticles. We found that with increasing temperature, the parallel diffusion rate decreased, while the perpendicular diffusion rate increased. The ratio of the parallel to perpendicular diffusion rate ( D ‖ / D ⊥ ) can be used to indicate the dominant charge carrier hopping mechanism. Without light irradiation, perpendicular diffusion dominates the charge carrier hopping, starting at 25 K, with a ratio of 1.70 × 10 4 , whereas with light irradiation, the perpendicular diffusion of the charge carrier starts to dominate at the temperature of 10 K, with a ratio of 2.40 × 10 4 . It is indicated that the additional energy from light irradiation affects the diffusion, especially the charge diffusion in the perpendicular direction.

Suggested Citation

  • Eka Pratikna & Lusi Safriani & Nowo Riveli & Budi Adiperdana & Suci Winarsih & Annisa Aprilia & Dita Puspita Sari & Isao Watanabe & Risdiana Risdiana, 2021. "Effect of Light Irradiation on the Diffusion Rate of the Charge Carrier Hopping Mechanism in P3HT–ZnO Nanoparticles Studied by μ + SR," Energies, MDPI, vol. 14(20), pages 1-11, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6730-:d:657744
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6730/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6730/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Das, Narayan Ch. & Sokol, Paul E., 2010. "Hybrid photovoltaic devices from regioregular polythiophene and ZnO nanoparticles composites," Renewable Energy, Elsevier, vol. 35(12), pages 2683-2688.
    2. Kunta Yoshikawa & Hayato Kawasaki & Wataru Yoshida & Toru Irie & Katsunori Konishi & Kunihiro Nakano & Toshihiko Uto & Daisuke Adachi & Masanori Kanematsu & Hisashi Uzu & Kenji Yamamoto, 2017. "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%," Nature Energy, Nature, vol. 2(5), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Douri, Y. & Baaziz, H. & Charifi, Z. & Khenata, R. & Hashim, U. & Al-Jassim, M., 2012. "Further optical properties of CdX (X=S, Te) compounds under quantum dot diameter effect: Ab initio method," Renewable Energy, Elsevier, vol. 45(C), pages 232-236.
    2. Jae Yun Jeong & Inje Kang & Ki Seok Choi & Byeong-Hee Lee, 2018. "Network Analysis on Green Technology in National Research and Development Projects in Korea," Sustainability, MDPI, vol. 10(4), pages 1-12, April.
    3. Wang, Yunjie & Yang, Huihan & Chen, Haifei & Yu, Bendong & Zhang, Haohua & Zou, Rui & Ren, Shaoyang, 2023. "A review: The development of crucial solar systems and corresponding cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    4. Mehmood, Haris & Nasser, Hisham & Zaidi, Syed Muhammad Hassan & Tauqeer, Tauseef & Turan, Raşit, 2022. "Physical device simulation of dopant-free asymmetric silicon heterojunction solar cell featuring tungsten oxide as a hole-selective layer with ultrathin silicon oxide passivation layer," Renewable Energy, Elsevier, vol. 183(C), pages 188-201.
    5. Yanan Shi & Yilin Chang & Kun Lu & Zhihao Chen & Jianqi Zhang & Yangjun Yan & Dingding Qiu & Yanan Liu & Muhammad Abdullah Adil & Wei Ma & Xiaotao Hao & Lingyun Zhu & Zhixiang Wei, 2022. "Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Changhyun Lee & Soohyun Bae & HyunJung Park & Dongjin Choi & Hoyoung Song & Hyunju Lee & Yoshio Ohshita & Donghwan Kim & Yoonmook Kang & Hae-Seok Lee, 2020. "Properties of Thermally Evaporated Titanium Dioxide as an Electron-Selective Contact for Silicon Solar Cells," Energies, MDPI, vol. 13(3), pages 1-10, February.
    7. Li, Zhenpeng & Ma, Tao, 2022. "Theoretic efficiency limit and design criteria of solar photovoltaics with high visual perceptibility," Applied Energy, Elsevier, vol. 324(C).
    8. Dehaudt, Jérémy & Husson, Jérôme & Guyard, Laurent & Oswald, Frédéric & Martineau, David, 2014. "A simple access to “Black-Dye” analogs with good efficiencies in dye-sensitized solar cells," Renewable Energy, Elsevier, vol. 66(C), pages 588-595.
    9. Mehmood, Haris & Nasser, Hisham & Tauqeer, Tauseef & Turan, Raşit, 2019. "Simulation of silicon heterostructure solar cell featuring dopant-free carrier-selective molybdenum oxide and titanium oxide contacts," Renewable Energy, Elsevier, vol. 143(C), pages 359-367.
    10. Issa M. Aziz, 2023. "Synthesizing and characterization of Lead Halide Perovskite Nanocrystals solar cells from reused car batteries," Technium, Technium Science, vol. 10(1), pages 14-26.
    11. Meng-Hsueh Kuo & Neda Neykova & Ivo Stachiv, 2024. "Overview of the Recent Findings in the Perovskite-Type Structures Used for Solar Cells and Hydrogen Storage," Energies, MDPI, vol. 17(18), pages 1-23, September.
    12. Khan, Firoz & Rezgui, Béchir Dridi & Khan, Mohd Taukeer & Al-Sulaiman, Fahad, 2022. "Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    13. Ng, C.H. & Lim, H.N. & Hayase, S. & Zainal, Z. & Huang, N.M., 2018. "Photovoltaic performances of mono- and mixed-halide structures for perovskite solar cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 248-274.
    14. Chantana, Jakapan & Takeguchi, Kota & Kawano, Yu & Minemoto, Takashi, 2022. "Estimation of annual energy generation of perovskite/crystalline Si tandem solar cells with different configurations in central part of Japan," Renewable Energy, Elsevier, vol. 195(C), pages 896-905.
    15. Abyl Muradov & Daria Frolushkina & Vadim Samusenkov & Gulsara Zhamanbayeva & Sebastian Kot, 2021. "Methods of Stability Control of Perovskite Solar Cells for High Efficiency," Energies, MDPI, vol. 14(10), pages 1-16, May.
    16. Giovanni Landi & Sergio Pagano & Heinz Christoph Neitzert & Costantino Mauro & Carlo Barone, 2023. "Noise Spectroscopy: A Tool to Understand the Physics of Solar Cells," Energies, MDPI, vol. 16(3), pages 1-37, January.
    17. Wang, Ji-Xiang & Zhong, Mingliang & Wu, Zhe & Guo, Mengyue & Liang, Xin & Qi, Bo, 2022. "Ground-based investigation of a directional, flexible, and wireless concentrated solar energy transmission system," Applied Energy, Elsevier, vol. 322(C).
    18. Hoyoung Song & Changhyun Lee & Jiyeon Hyun & Sang-Won Lee & Dongjin Choi & Dowon Pyun & Jiyeon Nam & Seok-Hyun Jeong & Jiryang Kim & Soohyun Bae & Hyunju Lee & Yoonmook Kang & Donghwan Kim & Hae-Seok , 2021. "Monolithic Perovskite-Carrier Selective Contact Silicon Tandem Solar Cells Using Molybdenum Oxide as a Hole Selective Layer," Energies, MDPI, vol. 14(11), pages 1-9, May.
    19. Mostafa M. Salah & Abdelhalim Zekry & Ahmed Shaker & Mohamed Abouelatta & Mohamed Mousa & Ahmed Saeed, 2022. "Investigation of Electron Transport Material-Free Perovskite/CIGS Tandem Solar Cell," Energies, MDPI, vol. 15(17), pages 1-16, August.
    20. Hao Lin & Miao Yang & Xiaoning Ru & Genshun Wang & Shi Yin & Fuguo Peng & Chengjian Hong & Minghao Qu & Junxiong Lu & Liang Fang & Can Han & Paul Procel & Olindo Isabella & Pingqi Gao & Zhenguo Li & X, 2023. "Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers," Nature Energy, Nature, vol. 8(8), pages 789-799, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6730-:d:657744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.