IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6708-d657328.html
   My bibliography  Save this article

A New Uncertainty-Based Control Scheme of the Small Modular Dual Fluid Reactor and Its Optimization

Author

Listed:
  • Chunyu Liu

    (Chair of Nuclear Technology, Department of Mechanical Engineering, Technical University of Munich (TUM), 85748 Garching, Germany)

  • Run Luo

    (Chair of Nuclear Technology, Department of Mechanical Engineering, Technical University of Munich (TUM), 85748 Garching, Germany
    School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China)

  • Rafael Macián-Juan

    (Chair of Nuclear Technology, Department of Mechanical Engineering, Technical University of Munich (TUM), 85748 Garching, Germany)

Abstract

The small modular dual fluid reactor is a novel variant of the Generation IV molten salt reactor and liquid metal fast reactor. In the primary circuit, molten salt or liquid eutectic metal (U-Pu-Cr) is employed as fuel, and liquid lead works as the coolant in the secondary circuit. To design the control system of such an advanced reactor, the uncertainties of the employed computer model and the physicochemical properties of the materials must be considered. In this paper, a one-dimensional model of a core is established based on the equivalent parameters achieved via the coupled three-dimensional model, taking into account delayed neutron precursor drifting, and a power control system is developed. The performance of the designed controllers is assessed, taking into account the model and property uncertainties. The achieved results show that the designed control system is able to maintain the stability of the system and regulate the power as expected. Among the considered uncertain parameters, the reactivity coefficients of fuel temperature have the largest influence on the performance of the control system. The most optimized configuration of the control system is delivered based on the characteristics of uncertainty propagation by using the particle swarm optimization method.

Suggested Citation

  • Chunyu Liu & Run Luo & Rafael Macián-Juan, 2021. "A New Uncertainty-Based Control Scheme of the Small Modular Dual Fluid Reactor and Its Optimization," Energies, MDPI, vol. 14(20), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6708-:d:657328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Run Luo & Chunyu Liu & Rafael Macián-Juan, 2021. "Investigation of Control Characteristics for a Molten Salt Reactor Plant under Normal and Accident Conditions," Energies, MDPI, vol. 14(17), pages 1-23, August.
    2. Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    2. Helton, Jon C. & Johnson, Jay D. & Sallaberry, Cédric J., 2011. "Quantification of margins and uncertainties: Example analyses from reactor safety and radioactive waste disposal involving the separation of aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1014-1033.
    3. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    4. Saurbayeva, Assemgul & Memon, Shazim Ali & Kim, Jong, 2023. "Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones," Energy, Elsevier, vol. 278(PB).
    5. Donghyeon Yoo & Jinhwan Park & Jaemin Moon & Changwan Kim, 2021. "Reliability-Based Design Optimization for Reducing the Performance Failure and Maximizing the Specific Energy of Lithium-Ion Batteries Considering Manufacturing Uncertainty of Porous Electrodes," Energies, MDPI, vol. 14(19), pages 1-15, September.
    6. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    7. Javier Urquizo & Carlos Calderón & Philip James, 2017. "Using a Local Framework Combining Principal Component Regression and Monte Carlo Simulation for Uncertainty and Sensitivity Analysis of a Domestic Energy Model in Sub-City Areas," Energies, MDPI, vol. 10(12), pages 1-22, December.
    8. Cao, Jiaokun & Du, Farong & Ding, Shuiting, 2013. "Global sensitivity analysis for dynamic systems with stochastic input processes," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 106-117.
    9. Guo, Zehua & Dailey, Ryan & Feng, Tangtao & Zhou, Yukun & Sun, Zhongning & Corradini, Michael L & Wang, Jun, 2021. "Uncertainty analysis of ATF Cr-coated-Zircaloy on BWR in-vessel accident progression during a station blackout," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    10. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    11. Jingwen Song & Zhenzhou Lu & Pengfei Wei & Yanping Wang, 2015. "Global sensitivity analysis for model with random inputs characterized by probability-box," Journal of Risk and Reliability, , vol. 229(3), pages 237-253, June.
    12. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2017. "A long-term performance analysis of three different configurations for community-sized solar heating systems in high latitudes," Renewable Energy, Elsevier, vol. 113(C), pages 479-493.
    13. Auder, Benjamin & De Crecy, Agnès & Iooss, Bertrand & Marquès, Michel, 2012. "Screening and metamodeling of computer experiments with functional outputs. Application to thermal–hydraulic computations," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 122-131.
    14. Galetakis, Michael & Roumpos, Christos & Alevizos, George & Vamvuka, Despina, 2011. "Production scheduling of a lignite mine under quality and reserves uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1611-1618.
    15. Bolado-Lavin, R. & Castaings, W. & Tarantola, S., 2009. "Contribution to the sample mean plot for graphical and numerical sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1041-1049.
    16. Zio, E. & Pedroni, N., 2010. "An optimized Line Sampling method for the estimation of the failure probability of nuclear passive systems," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1300-1313.
    17. Yildiz, Yusuf & Korkmaz, Koray & Göksal Özbalta, Türkan & Durmus Arsan, Zeynep, 2012. "An approach for developing sensitive design parameter guidelines to reduce the energy requirements of low-rise apartment buildings," Applied Energy, Elsevier, vol. 93(C), pages 337-347.
    18. Wu, Qiong-Li & Cournède, Paul-Henry & Mathieu, Amélie, 2012. "An efficient computational method for global sensitivity analysis and its application to tree growth modelling," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 35-43.
    19. Swift, Peter N. & Hansen, Clifford W. & Helton, Jon C. & Howard, Robert L. & Kathryn Knowles, M. & MacKinnon, Robert J. & McNeish, Jerry A. & David Sevougian, S., 2014. "Summary discussion of the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 449-456.
    20. Zio, E. & Pedroni, N., 2012. "Monte Carlo simulation-based sensitivity analysis of the model of a thermal–hydraulic passive system," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 90-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6708-:d:657328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.