IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6627-d655768.html
   My bibliography  Save this article

Intelligent Permanent Magnet Motor-Based Servo Drive System Used for Automated Tuning of Piano

Author

Listed:
  • Ying Zhou

    (Department of Music, Durham University, Durham DH1 3RL, UK)

  • Zuyu Wu

    (Department of Electronic Engineering, University of York, York YO10 5DD, UK)

  • Yutong Wu

    (Business School, Newcastle University, Newcastle upon Tyne NE1 4SE, UK)

Abstract

This paper presents an intelligent permanent magnet synchronous motor-based servo drive system used in automated piano tuning applications. The permanent magnet synchronous motor-based drives are able to improve the accuracy of the piano tuning process in comparison with the traditional direct-current motor-based and step motor-based servo drives. To explain the techniques, firstly, the structure and principles of the automated piano tuning devices with a surface-mounted permanent magnet synchronous motor-based drive system integrated are introduced, illustrating that it is feasible to implement the proposed piano tuning strategy. Secondly, the piano tuning devices have two functions: low-speed rotation and position holding. To ensure that the surface-mounted permanent magnet synchronous motor can rotate stably over the low-speed range with strong anti-interference capacity, a double closed-loop speed-regulation-based control scheme is employed. And to ensure high position control performance, a fuzzy-adaptive triple closed-loop position-regulation-based control scheme is employed. It terms of the control schemes, it deserves to be mentioned that main contributions include, firstly, the parameters of the proportional integral controllers in the double closed-loop speed-regulation structure is tuned relying on both stability and bandwidth analyses. Then, a fuzzy-adaptive proportional integral controller is specially-designed for the triple closed-loop position-regulation to adapt to the piano tuning applications. Simulation is conducted on a 20 rpm three-phase permanent magnet synchronous motor servo drive-based piano tuning system to validate the proposed piano tuning method and to verify the proposed control techniques.

Suggested Citation

  • Ying Zhou & Zuyu Wu & Yutong Wu, 2021. "Intelligent Permanent Magnet Motor-Based Servo Drive System Used for Automated Tuning of Piano," Energies, MDPI, vol. 14(20), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6627-:d:655768
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6627/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6627/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krzysztof Kolano & Bartosz Drzymała & Jakub Gęca, 2021. "Sinusoidal Control of a Brushless DC Motor with Misalignment of Hall Sensors," Energies, MDPI, vol. 14(13), pages 1-13, June.
    2. Xiang Zhang & Yunlong Chen & Yves Mollet & Jiaqiang Yang & Johan Gyselinck, 2020. "An Accurate Discrete Current Controller for High-Speed PMSMs/Gs in Flywheel Applications," Energies, MDPI, vol. 13(6), pages 1-17, March.
    3. Mustafa Tumbek & Selami Kesler, 2019. "Design and Implementation of a Low Power Outer-Rotor Line-Start Permanent-Magnet Synchronous Motor for Ultra-Light Electric Vehicles," Energies, MDPI, vol. 12(16), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu Xiong & Jian Pan & Yucui Yang, 2022. "Robust Decoupling Vector Control of Interior Permanent Magnet Synchronous Motor Used in Electric Vehicles with Reduced Parameter Mismatch Impacts," Sustainability, MDPI, vol. 14(19), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyungkwan Jang & Hyunwoo Kim & Huai-Cong Liu & Ho-Joon Lee & Ju Lee, 2021. "Investigation on the Torque Ripple Reduction Method of a Hybrid Electric Vehicle Motor," Energies, MDPI, vol. 14(5), pages 1-13, March.
    2. Ryo Yoshida & Jun Kitajima & Takashi Sakae & Mitsuhide Sato & Tsutomu Mizuno & Yuki Shimoda & Akihiro Kubota & Shogo Wada & Teruo Kichiji & Hideo Kumagai, 2022. "Effect of Magnetic Properties of Magnetic Composite Tapes on Motor Losses," Energies, MDPI, vol. 15(21), pages 1-16, October.
    3. Armagan Bozkurt & Ahmet Fevzi Baba & Yusuf Oner, 2021. "Design of Outer-Rotor Permanent-Magnet-Assisted Synchronous Reluctance Motor for Electric Vehicles," Energies, MDPI, vol. 14(13), pages 1-12, June.
    4. Hongjin Hu & Haoze Wang & Kun Liu & Jingbo Wei & Xiangjie Shen, 2022. "A Simplified Space Vector Pulse Width Modulation Algorithm of a High-Speed Permanent Magnet Synchronous Machine Drive for a Flywheel Energy Storage System," Energies, MDPI, vol. 15(11), pages 1-21, June.
    5. Krzysztof Kolano & Artur Jan Moradewicz & Bartosz Drzymała & Jakub Gęca, 2022. "Influence of the Placement Accuracy of the Brushless DC Motor Hall Sensor on Inverter Transistor Losses," Energies, MDPI, vol. 15(5), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6627-:d:655768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.