IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6441-d652112.html
   My bibliography  Save this article

Computing and Assessment of Discrete Angle Positions for Optimizing the Solar Energy Harvesting for Urban Sustainable Development

Author

Listed:
  • Guillermo Quiroga-Ocaña

    (School of Engineering and Sciences, Tecnologico de Monterrey, Blvd. Enrique Mazón López 965, Hermosillo 83000, Sonora, Mexico)

  • Julio C. Montaño-Moreno

    (School of Engineering and Sciences, Tecnologico de Monterrey, Blvd. Enrique Mazón López 965, Hermosillo 83000, Sonora, Mexico)

  • Enrique A. Enríquez-Velásquez

    (School of Engineering, The University of Edinburgh, Sanderson Building, Robert Stevenson Road, The King’s Buildings, Edinburgh EH9 3FB, UK)

  • Victor H. Benitez

    (Department of Industrial Engineering, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico)

  • Luis C. Félix-Herrán

    (School of Engineering and Sciences, Tecnologico de Monterrey, Blvd. Enrique Mazón López 965, Hermosillo 83000, Sonora, Mexico)

  • Jorge de-J. Lozoya-Santos

    (School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo Leon, Mexico)

  • Ricardo A. Ramírez-Mendoza

    (School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo Leon, Mexico)

Abstract

This paper proposes the computation and assessment of optimal tilt and azimuth angles for a receiving surface, using a mathematical model developed at the University of Tomsk, Russia. The model was validated and analyzed for the Nuevo León State, Northeast Mexico, utilizing a set of metrics, comparing against satellite data from NASA. A point of interest in the city of Monterrey was analyzed to identify orientation patterns throughout the year for an optimal solar energy gathering. The aim is providing the best orientation tilt angles for photovoltaic or solar thermal panels without tracking systems. In addition, this analysis is proposed as a tool to achieve optimal performance in sustainable urban development in the region. Based on the findings, a set of optimal tilt and azimuth surface angles are proposed for the analyzed coordinates. The aim is to identify the optimal performance to obtain the maximum solar irradiation possible over the year for solar projects in the region. The results show that the model can be used as a tool to accelerate decision making in the design of solar harvesting surfaces and allows the design of discrete tracking systems with an increase in solar energy harvesting above 5% annually.

Suggested Citation

  • Guillermo Quiroga-Ocaña & Julio C. Montaño-Moreno & Enrique A. Enríquez-Velásquez & Victor H. Benitez & Luis C. Félix-Herrán & Jorge de-J. Lozoya-Santos & Ricardo A. Ramírez-Mendoza, 2021. "Computing and Assessment of Discrete Angle Positions for Optimizing the Solar Energy Harvesting for Urban Sustainable Development," Energies, MDPI, vol. 14(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6441-:d:652112
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6441/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6441/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesco Mancini & Benedetto Nastasi, 2020. "Solar Energy Data Analytics: PV Deployment and Land Use," Energies, MDPI, vol. 13(2), pages 1-18, January.
    2. Besharat, Fariba & Dehghan, Ali A. & Faghih, Ahmad R., 2013. "Empirical models for estimating global solar radiation: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 798-821.
    3. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2015. "Review and statistical analysis of different global solar radiation sunshine models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1869-1880.
    4. Enrique A. Enríquez-Velásquez & Victor H. Benitez & Sergey G. Obukhov & Luis C. Félix-Herrán & Jorge de-J. Lozoya-Santos, 2020. "Estimation of Solar Resource Based on Meteorological and Geographical Data: Sonora State in Northwestern Territory of Mexico as Case Study," Energies, MDPI, vol. 13(24), pages 1-41, December.
    5. Luis Sarmiento & Thorsten Burandt & Konstantin Löffler & Pao-Yu Oei, 2019. "Analyzing Scenarios for the Integration of Renewable Energy Sources in the Mexican Energy System—An Application of the Global Energy System Model (GENeSYS-MOD)," Energies, MDPI, vol. 12(17), pages 1-24, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fausto André Valenzuela-Domínguez & Luis Alfonso Santa Cruz & Enrique A. Enríquez-Velásquez & Luis C. Félix-Herrán & Victor H. Benitez & Jorge de-J. Lozoya-Santos & Ricardo A. Ramírez-Mendoza, 2021. "Solar Irradiation Evaluation through GIS Analysis Based on Grid Resolution and a Mathematical Model: A Case Study in Northeast Mexico," Energies, MDPI, vol. 14(19), pages 1-37, October.
    2. Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.
    3. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    4. Enrique A. Enríquez-Velásquez & Victor H. Benitez & Sergey G. Obukhov & Luis C. Félix-Herrán & Jorge de-J. Lozoya-Santos, 2020. "Estimation of Solar Resource Based on Meteorological and Geographical Data: Sonora State in Northwestern Territory of Mexico as Case Study," Energies, MDPI, vol. 13(24), pages 1-41, December.
    5. Chang, Kai & Zhang, Qingyuan, 2019. "Improvement of the hourly global solar model and solar radiation for air-conditioning design in China," Renewable Energy, Elsevier, vol. 138(C), pages 1232-1238.
    6. Hassan, Gasser E. & Youssef, M. Elsayed & Mohamed, Zahraa E. & Ali, Mohamed A. & Hanafy, Ahmed A., 2016. "New Temperature-based Models for Predicting Global Solar Radiation," Applied Energy, Elsevier, vol. 179(C), pages 437-450.
    7. Jahani, Babak & Dinpashoh, Y. & Raisi Nafchi, Atefeh, 2017. "Evaluation and development of empirical models for estimating daily solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 878-891.
    8. Qin, Wenmin & Wang, Lunche & Lin, Aiwen & Zhang, Ming & Xia, Xiangao & Hu, Bo & Niu, Zigeng, 2018. "Comparison of deterministic and data-driven models for solar radiation estimation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 579-594.
    9. Fan, Junliang & Chen, Baiquan & Wu, Lifeng & Zhang, Fucang & Lu, Xianghui & Xiang, Youzhen, 2018. "Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions," Energy, Elsevier, vol. 144(C), pages 903-914.
    10. Qiu, Rangjian & Li, Longan & Wu, Lifeng & Agathokleous, Evgenios & Liu, Chunwei & Zhang, Baozhong & Luo, Yufeng & Sun, Shanlei, 2022. "Modeling daily global solar radiation using only temperature data: Past, development, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    11. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
    12. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    13. Potić, Ivan & Golić, Rajko & Joksimović, Tatjana, 2016. "Analysis of insolation potential of Knjaževac Municipality (Serbia) using multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 235-245.
    14. Chen, Ji-Long & He, Lei & Yang, Hong & Ma, Maohua & Chen, Qiao & Wu, Sheng-Jun & Xiao, Zuo-lin, 2019. "Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 91-111.
    15. Qin, Shujing & Liu, Zhihe & Qiu, Rangjian & Luo, Yufeng & Wu, Jingwei & Zhang, Baozhong & Wu, Lifeng & Agathokleous, Evgenios, 2023. "Short–term global solar radiation forecasting based on an improved method for sunshine duration prediction and public weather forecasts," Applied Energy, Elsevier, vol. 343(C).
    16. Wang, Lunche & Kisi, Ozgur & Zounemat-Kermani, Mohammad & Salazar, Germán Ariel & Zhu, Zhongmin & Gong, Wei, 2016. "Solar radiation prediction using different techniques: model evaluation and comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 384-397.
    17. Zhang, Jianyuan & Zhao, Li & Deng, Shuai & Xu, Weicong & Zhang, Ying, 2017. "A critical review of the models used to estimate solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 314-329.
    18. Paulescu, M. & Stefu, N. & Calinoiu, D. & Paulescu, E. & Pop, N. & Boata, R. & Mares, O., 2016. "Ångström–Prescott equation: Physical basis, empirical models and sensitivity analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 495-506.
    19. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Wang, Xiukang & Lu, Xianghui & Xiang, Youzhen, 2018. "Evaluating the effect of air pollution on global and diffuse solar radiation prediction using support vector machine modeling based on sunshine duration and air temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 732-747.
    20. Mecibah, Mohamed Salah & Boukelia, Taqiy Eddine & Tahtah, Reda & Gairaa, Kacem, 2014. "Introducing the best model for estimation the monthly mean daily global solar radiation on a horizontal surface (Case study: Algeria)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 194-202.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6441-:d:652112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.