IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i1p235-d474701.html
   My bibliography  Save this article

Integrated Unfold-PCA Monitoring Application for Smart Buildings: An AHU Application Example

Author

Listed:
  • Llorenç Burgas

    (Department of Electrical, Electronic and Automatic Engineering, University of Girona, 17004 Girona, Spain)

  • Joan Colomer

    (Department of Electrical, Electronic and Automatic Engineering, University of Girona, 17004 Girona, Spain)

  • Joaquim Melendez

    (Department of Electrical, Electronic and Automatic Engineering, University of Girona, 17004 Girona, Spain)

  • Francisco Ignacio Gamero

    (Department of Electrical, Electronic and Automatic Engineering, University of Girona, 17004 Girona, Spain)

  • Sergio Herraiz

    (Department of Electrical, Electronic and Automatic Engineering, University of Girona, 17004 Girona, Spain)

Abstract

This paper presents a complete methodology, together with its implementation as a web application, for monitoring smart buildings. The approach uses unfold-Principal Component Analysis (unfold-PCA) as a batch projection method and two statistics, Hotelling’s T-squared ( T 2 ) and the squared prediction error ( SPE ), for alarm generation resulting in two simple control charts independently on the number of variables involved. The method consists of modelling the normal operating conditions of a building (entire building, room or subsystem) with latent variables described expressing the principal components. Thus, the method allows detecting faults and misbehaviour as a deviation of previously mentioned statistics from their statistical thresholds. Once a fault or misbehaviour is detected, the isolation of sensors that mostly contribute to such detection is proposed as a first step for diagnosis. The methodology has been implemented under a SaaS (software as a service) approach to be offered to multiple buildings as an on-line application for facility managers. The application is general enough to be used for monitoring complete buildings, or parts of them, using on-line data. A complete example of use for monitoring the performance of the air handling unit of a lecture theatre is presented as demonstrative example and results are discussed

Suggested Citation

  • Llorenç Burgas & Joan Colomer & Joaquim Melendez & Francisco Ignacio Gamero & Sergio Herraiz, 2021. "Integrated Unfold-PCA Monitoring Application for Smart Buildings: An AHU Application Example," Energies, MDPI, vol. 14(1), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:235-:d:474701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/235/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gaitani, N. & Lehmann, C. & Santamouris, M. & Mihalakakou, G. & Patargias, P., 2010. "Using principal component and cluster analysis in the heating evaluation of the school building sector," Applied Energy, Elsevier, vol. 87(6), pages 2079-2086, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaosheng Peng & Kai Cheng & Jianxun Lang & Zuowei Zhang & Tao Cai & Shanxu Duan, 2021. "Short-Term Wind Power Prediction for Wind Farm Clusters Based on SFFS Feature Selection and BLSTM Deep Learning," Energies, MDPI, vol. 14(7), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Leo, Senatro & Cosmi, Carmelina & Ragosta, Maria, 2015. "An application of multivariate statistical techniques to partial equilibrium models outputs: The analysis of the NEEDS-TIMES Pan European model results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 108-120.
    2. Papadopoulos, Sokratis & Bonczak, Bartosz & Kontokosta, Constantine E., 2018. "Pattern recognition in building energy performance over time using energy benchmarking data," Applied Energy, Elsevier, vol. 221(C), pages 576-586.
    3. Yunbo Yang & Rongling Li & Tao Huang, 2020. "Smart Meter Data Analysis of a Building Cluster for Heating Load Profile Quantification and Peak Load Shifting," Energies, MDPI, vol. 13(17), pages 1-20, August.
    4. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    5. Chung, Mo & Park, Hwa-Choon, 2012. "Building energy demand patterns for department stores in Korea," Applied Energy, Elsevier, vol. 90(1), pages 241-249.
    6. Miller, Clayton & Nagy, Zoltán & Schlueter, Arno, 2018. "A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1365-1377.
    7. Juan E. Pardo & Ana Mejías & Antonio Sartal, 2020. "Assessing the Importance of Biomass-Based Heating Systems for More Sustainable Buildings: A Case Study Based in Spain," Energies, MDPI, vol. 13(5), pages 1-19, February.
    8. Mahmoud Abdelkader Bashery Abbass & Mohamed Hamdy, 2021. "A Generic Pipeline for Machine Learning Users in Energy and Buildings Domain," Energies, MDPI, vol. 14(17), pages 1-30, August.
    9. Paola Marrone & Paola Gori & Francesco Asdrubali & Luca Evangelisti & Laura Calcagnini & Gianluca Grazieschi, 2018. "Energy Benchmarking in Educational Buildings through Cluster Analysis of Energy Retrofitting," Energies, MDPI, vol. 11(3), pages 1-20, March.
    10. Wadud, Zia & Royston, Sarah & Selby, Jan, 2019. "Modelling energy demand from higher education institutions: A case study of the UK," Applied Energy, Elsevier, vol. 233, pages 816-826.
    11. Gatt, Damien & Yousif, Charles & Cellura, Maurizio & Camilleri, Liberato & Guarino, Francesco, 2020. "Assessment of building energy modelling studies to meet the requirements of the new Energy Performance of Buildings Directive," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    12. William Nelson & Charles Culp, 2022. "Machine Learning Methods for Automated Fault Detection and Diagnostics in Building Systems—A Review," Energies, MDPI, vol. 15(15), pages 1-20, July.
    13. Wang, Wei & Hong, Tianzhen & Xu, Xiaodong & Chen, Jiayu & Liu, Ziang & Xu, Ning, 2019. "Forecasting district-scale energy dynamics through integrating building network and long short-term memory learning algorithm," Applied Energy, Elsevier, vol. 248(C), pages 217-230.
    14. Yao, Ting & Zhang, Yue-Jun & Ma, Chao-Qun, 2017. "How does investor attention affect international crude oil prices?," Applied Energy, Elsevier, vol. 205(C), pages 336-344.
    15. Hanaa Talei & Driss Benhaddou & Carlos Gamarra & Houda Benbrahim & Mohamed Essaaidi, 2021. "Smart Building Energy Inefficiencies Detection through Time Series Analysis and Unsupervised Machine Learning," Energies, MDPI, vol. 14(19), pages 1-21, September.
    16. Hsu, David, 2015. "Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data," Applied Energy, Elsevier, vol. 160(C), pages 153-163.
    17. Wang, Endong, 2015. "Benchmarking whole-building energy performance with multi-criteria technique for order preference by similarity to ideal solution using a selective objective-weighting approach," Applied Energy, Elsevier, vol. 146(C), pages 92-103.
    18. Shen, Pengyuan & Wang, Huilong, 2024. "Archetype building energy modeling approaches and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:235-:d:474701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.