IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6429-d651900.html
   My bibliography  Save this article

A New Tool for Building Energy Optimization: First Round of Successful Dynamic Model Simulations

Author

Listed:
  • Giacomo Chiesa

    (Department of Architecture and Design, Politecnico di Torino, Viale PierAndrea Mattioli 39, 10125 Turin, Italy
    These authors contributed equally to this work.)

  • Francesca Fasano

    (Department of Architecture and Design, Politecnico di Torino, Viale PierAndrea Mattioli 39, 10125 Turin, Italy
    These authors contributed equally to this work.)

  • Paolo Grasso

    (Department of Architecture and Design, Politecnico di Torino, Viale PierAndrea Mattioli 39, 10125 Turin, Italy
    These authors contributed equally to this work.)

Abstract

Several tools and pieces of software support building energy modelling for optimization, certification and comparisons of different scenarios and usages. Nevertheless, the consistent rise in accessible computational power and the expansion of ICT are pushing the development of new software functionalities and tools able to support cross-disciplinary work on smart building optimization. This paper introduces a new platform (under development) that combines the EnergyPlus dynamic simulation tool with extra-functionalities and pre-defined usage scenarios based on automatic actions to manage massive simulations and correlation analyses. The tool’s utility was tested in three experiments, with goals that we consider to be fundamental requirements: comparing simple retrofit actions to reduce net energy needs; analyzing the free-running potential of a demo building and the impacts of different low-energy technologies in terms of increasing thermal comfort (shading and ventilative cooling); and comparing measured sensor data indicators with simulated ones under real weather conditions for model verification. The results demonstrate the ability of the tool to automatically generate hundreds of EnergyPlus input building models by acting on building geometry; we focused on the most common uses for parametric dynamic simulations. Additionally, the way in which the tool combines the automatic modification of the building’s design and the parallel launching of multiple simulations allows the labor to be reduced. The user can execute complex tasks without spending any time working with model editing software and aggregating the results from multiple simulations.

Suggested Citation

  • Giacomo Chiesa & Francesca Fasano & Paolo Grasso, 2021. "A New Tool for Building Energy Optimization: First Round of Successful Dynamic Model Simulations," Energies, MDPI, vol. 14(19), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6429-:d:651900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6429/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6429/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Germán Campos Gordillo & Germán Ramos Ruiz & Yves Stauffer & Stephan Dasen & Carlos Fernández Bandera, 2020. "EplusLauncher: An API to Perform Complex EnergyPlus Simulations in MATLAB ® and C#," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    2. Pasichnyi, Oleksii & Wallin, Jörgen & Kordas, Olga, 2019. "Data-driven building archetypes for urban building energy modelling," Energy, Elsevier, vol. 181(C), pages 360-377.
    3. Giacomo Chiesa & Andrea Acquaviva & Mario Grosso & Lorenzo Bottaccioli & Maurizio Floridia & Edoardo Pristeri & Edoardo Maria Sanna, 2019. "Parametric Optimization of Window-to-Wall Ratio for Passive Buildings Adopting A Scripting Methodology to Dynamic-Energy Simulation," Sustainability, MDPI, vol. 11(11), pages 1-30, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kotarela, Faidra & Kyritsis, Anastasios & Agathokleous, Rafaela & Papanikolaou, Nick, 2023. "On the exploitation of dynamic simulations for the design of buildings energy systems," Energy, Elsevier, vol. 271(C).
    2. Martin, Rit & Arthur, Thomas & Jonathan, Villot & Mathieu, Thorel & Enora, Garreau & Robin, Girard, 2024. "SHAPE: A temporal optimization model for residential buildings retrofit to discuss policy objectives," Applied Energy, Elsevier, vol. 361(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xavier Faure & Tim Johansson & Oleksii Pasichnyi, 2022. "The Impact of Detail, Shadowing and Thermal Zoning Levels on Urban Building Energy Modelling (UBEM) on a District Scale," Energies, MDPI, vol. 15(4), pages 1-18, February.
    2. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    3. Pajek, Luka & Košir, Mitja, 2021. "Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation," Applied Energy, Elsevier, vol. 297(C).
    4. Monica Arnaudo & Monika Topel & Björn Laumert, 2020. "Vehicle-To-Grid for Peak Shaving to Unlock the Integration of Distributed Heat Pumps in a Swedish Neighborhood," Energies, MDPI, vol. 13(7), pages 1-13, April.
    5. Stefano Converso & Paolo Civiero & Stefano Ciprigno & Ivana Veselinova & Saffa Riffat, 2023. "Toward a Fast but Reliable Energy Performance Evaluation Method for Existing Residential Building Stock," Energies, MDPI, vol. 16(9), pages 1-24, May.
    6. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
    7. Mamdooh Alwetaishi & Omrane Benjeddou, 2021. "Impact of Window to Wall Ratio on Energy Loads in Hot Regions: A Study of Building Energy Performance," Energies, MDPI, vol. 14(4), pages 1-15, February.
    8. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. ChungYeon Won & SangTae No & Qamar Alhadidi, 2019. "Factors Affecting Energy Performance of Large-Scale Office Buildings: Analysis of Benchmarking Data from New York City and Chicago," Energies, MDPI, vol. 12(24), pages 1-17, December.
    10. Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.
    11. Avichal Malhotra & Simon Raming & Jérôme Frisch & Christoph van Treeck, 2021. "Open-Source Tool for Transforming CityGML Levels of Detail," Energies, MDPI, vol. 14(24), pages 1-26, December.
    12. Monika Topel & Josefine Grundius, 2020. "Load Management Strategies to Increase Electric Vehicle Penetration—Case Study on a Local Distribution Network in Stockholm," Energies, MDPI, vol. 13(18), pages 1-16, September.
    13. Tharindu Prabatha & Kasun Hewage & Rehan Sadiq, 2023. "An Incentives Planning Framework for Residential Energy Retrofits: A Life Cycle Thinking-Based Analysis under Uncertainty," Sustainability, MDPI, vol. 15(6), pages 1-29, March.
    14. Arnaudo, Monica & Topel, Monika & Laumert, Björn, 2020. "Techno-economic analysis of demand side flexibility to enable the integration of distributed heat pumps within a Swedish neighborhood," Energy, Elsevier, vol. 195(C).
    15. Jarvinen, J. & Goldsworthy, M. & White, S. & Pudney, P. & Belusko, M. & Bruno, F., 2021. "Evaluating the utility of passive thermal storage as an energy storage system on the Australian energy market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Qiong He & S. Thomas Ng & Md. Uzzal Hossain & Martin Skitmore, 2019. "Energy-Efficient Window Retrofit for High-Rise Residential Buildings in Different Climatic Zones of China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
    17. Schreiber, Thomas & Netsch, Christoph & Eschweiler, Sören & Wang, Tianyuan & Storek, Thomas & Baranski, Marc & Müller, Dirk, 2021. "Application of data-driven methods for energy system modelling demonstrated on an adaptive cooling supply system," Energy, Elsevier, vol. 230(C).
    18. Hong, Yejin & Yoon, Sungmin, 2022. "Holistic Operational Signatures for an energy-efficient district heating substation in buildings," Energy, Elsevier, vol. 250(C).
    19. Yang, Xiu'e & Liu, Shuli & Zou, Yuliang & Ji, Wenjie & Zhang, Qunli & Ahmed, Abdullahi & Han, Xiaojing & Shen, Yongliang & Zhang, Shaoliang, 2022. "Energy-saving potential prediction models for large-scale building: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    20. Cui, Shuang & Kishore, Ravi Anant & Kolari, Pranvera & Zheng, Qiye & Kaur, Sumanjeet & Vidal, Judith & Jackson, Roderick, 2023. "Model-driven development of durable and scalable thermal energy storage materials for buildings," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6429-:d:651900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.