IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6044-d640982.html
   My bibliography  Save this article

Design and Modelling of 3D Bionic Cathode Flow Field for Proton Exchange Membrane Fuel Cell

Author

Listed:
  • Lingfeng Xuan

    (Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China)

  • Yancheng Wang

    (Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
    State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Deqing Mei

    (Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
    State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Jingwei Lan

    (Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China)

Abstract

Proton exchange membrane fuel cells (PEMFCs) have been utilized as a promising power source for new energy vehicles. Their performances are greatly affected by the structural design of the flow field in the bipolar plate. In this paper, we present a novel three-dimensional (3D) bionic cathode flow field, inspired by the small intestinal villi. The structural design and working principle of the 3D bionic flow field units are first described. A 3D numerical model is developed to study the mass transfer and distribution of the reactants and products, as well as the polarization performances of the PEMFC with the 3D bionic cathode flow field. The simulation results indicate that the proposed 3D bionic flow field can significantly improve the reaction gas supply from the flow field to porous electrodes, and thus would be beneficial for the removal of liquid water in the cathode. The mass transfer of gas in the PEMFC can be enhanced due to the increasing contact areas between the gas diffusion layer (GDL) and the cathode flow field, and the distribution of currents in the membrane would be more uniform. The obtained results demonstrated the feasibility of using the 3D bionic flow field for the development of highly efficient PEMFCs with high power density.

Suggested Citation

  • Lingfeng Xuan & Yancheng Wang & Deqing Mei & Jingwei Lan, 2021. "Design and Modelling of 3D Bionic Cathode Flow Field for Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 14(19), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6044-:d:640982
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6044/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6044/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei Yuan & Zunlong Jin & Penghui Yang & Youchen Yang & Dingbiao Wang & Xiaotang Chen, 2021. "Numerical Analysis of the Influence of Different Flow Patterns on Power and Reactant Transmission in Tubular-Shaped PEMFC," Energies, MDPI, vol. 14(8), pages 1-16, April.
    2. Perng, Shiang-Wuu & Wu, Horng-Wen, 2015. "A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC," Applied Energy, Elsevier, vol. 143(C), pages 81-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhenhao & Hu, Kaihua & Zhang, Jian & Ding, Honghui & Xin, Dongqun & Zhang, Fengyun & Sun, Shufeng, 2023. "Gas-liquid mass transfer characteristics of a novel three-dimensional flow field bipolar plate for laser additive manufacturing of proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 212(C), pages 308-319.
    2. Huang, Haozhong & Li, Xuan & Li, Songwei & Guo, Xiaoyu & Liu, Mingxin & Wang, Tongying & Lei, Han, 2023. "Evaluating the effect of refined flow channels in a developed biomimetic flow field on PEMFC performance," Energy, Elsevier, vol. 266(C).
    3. Sarjuni, C.A. & Lim, B.H. & Majlan, E.H. & Rosli, M.I., 2024. "A review: Fluid dynamic and mass transport behaviour in a proton exchange membrane fuel cell stack," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiao, Jia Nan & Guo, Hang & Ye, Fang & Chen, Hao, 2024. "A nonlinear contraction channel design inspired by typical mathematical curves: Boosting net power and water discharge of PEM fuel cells," Applied Energy, Elsevier, vol. 357(C).
    2. Yulin Wang & Xiangling Liao & Guokun Liu & Haokai Xu & Chao Guan & Huixuan Wang & Hua Li & Wei He & Yanzhou Qin, 2023. "Review of Flow Field Designs for Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 16(10), pages 1-54, May.
    3. Yu, Rui Jiao & Guo, Hang & Ye, Fang & Chen, Hao, 2022. "Multi-parameter optimization of stepwise distribution of parameters of gas diffusion layer and catalyst layer for PEMFC peak power density," Applied Energy, Elsevier, vol. 324(C).
    4. Zijun Li & Jianguo Wang & Shubo Wang & Weiwei Li & Xiaofeng Xie, 2023. "Liquid Water Transport Characteristics and Droplet Dynamics of Proton Exchange Membrane Fuel Cells with 3D Wave Channel," Energies, MDPI, vol. 16(16), pages 1-19, August.
    5. Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
    6. Rostami, Leila & Haghshenasfard, Masoud & Sadeghi, Morteza & Zhiani, Mohammad, 2022. "A 3D CFD model of novel flow channel designs based on the serpentine and the parallel design for performance enhancement of PEMFC," Energy, Elsevier, vol. 258(C).
    7. Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
    8. Gong, Fan & Yang, Xiaolong & Zhang, Xun & Mao, Zongqiang & Gao, Weitao & Wang, Cheng, 2023. "The study of Tesla valve flow field on the net power of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 329(C).
    9. Xia, Zhifeng & Chen, Huicui & Zhang, Ruirui & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Behavior analysis of PEMFC with geometric configuration variation during multiple-step loading reduction process," Applied Energy, Elsevier, vol. 349(C).
    10. Zhang, Zhiqing & Liu, Hui & Yang, Dayong & Li, Junming & Lu, Kai & Ye, Yanshuai & Tan, Dongli, 2024. "Performance enhancements of power density and exergy efficiency for high-temperature proton exchange membrane fuel cell based on RSM-NSGA III," Energy, Elsevier, vol. 301(C).
    11. Danqi Su & Jiayang Zheng & Junjie Ma & Zizhe Dong & Zhangjie Chen & Yanzhou Qin, 2023. "Application of Machine Learning in Fuel Cell Research," Energies, MDPI, vol. 16(11), pages 1-32, May.
    12. Bai, Fan & Quan, Hong-Bing & Yin, Ren-Jie & Zhang, Zhuo & Jin, Shu-Qi & He, Pu & Mu, Yu-Tong & Gong, Xiao-Ming & Tao, Wen-Quan, 2022. "Three-dimensional multi-field digital twin technology for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 324(C).
    13. Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
    14. Perng, Shiang-Wuu & Chien, Tsai-Chieh & Horng, Rong-Fang & Wu, Horng-Wen, 2019. "Performance enhancement of a plate methanol steam reformer by ribs installed in the reformer channel," Energy, Elsevier, vol. 167(C), pages 588-601.
    15. Chen, Hao & Guo, Hang & Ye, Fang & MA, Chong Fang, 2022. "Cell performance and flow losses of proton exchange membrane fuel cells with orientated-type flow channels," Renewable Energy, Elsevier, vol. 181(C), pages 1338-1352.
    16. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    17. Baricci, Andrea & Mereu, Riccardo & Messaggi, Mirko & Zago, Matteo & Inzoli, Fabio & Casalegno, Andrea, 2017. "Application of computational fluid dynamics to the analysis of geometrical features in PEM fuel cells flow fields with the aid of impedance spectroscopy," Applied Energy, Elsevier, vol. 205(C), pages 670-682.
    18. Perng, Shiang-Wuu & Horng, Rong-Fang & Wu, Horng-Wen, 2017. "Effect of a diffuser on performance enhancement of a cylindrical methanol steam reformer by computational fluid dynamic analysis," Applied Energy, Elsevier, vol. 206(C), pages 312-328.
    19. Guo, Hang & Zhao, Qiang & Ye, Fang, 2022. "An experimental study on gas and liquid two-phase flow in orientated-type flow channels of proton exchange membrane fuel cells by using a side-view method," Renewable Energy, Elsevier, vol. 188(C), pages 603-618.
    20. Masli Irwan Rosli & Bee Huah Lim & Edy Herianto Majlan & Teuku Husaini & Wan Ramli Wan Daud & Soh Fong Lim, 2022. "Performance Analysis of PEMFC with Single-Channel and Multi-Channels on the Impact of the Geometrical Model," Energies, MDPI, vol. 15(21), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6044-:d:640982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.