Design and Modelling of 3D Bionic Cathode Flow Field for Proton Exchange Membrane Fuel Cell
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lei Yuan & Zunlong Jin & Penghui Yang & Youchen Yang & Dingbiao Wang & Xiaotang Chen, 2021. "Numerical Analysis of the Influence of Different Flow Patterns on Power and Reactant Transmission in Tubular-Shaped PEMFC," Energies, MDPI, vol. 14(8), pages 1-16, April.
- Perng, Shiang-Wuu & Wu, Horng-Wen, 2015. "A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC," Applied Energy, Elsevier, vol. 143(C), pages 81-95.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Zhenhao & Hu, Kaihua & Zhang, Jian & Ding, Honghui & Xin, Dongqun & Zhang, Fengyun & Sun, Shufeng, 2023. "Gas-liquid mass transfer characteristics of a novel three-dimensional flow field bipolar plate for laser additive manufacturing of proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 212(C), pages 308-319.
- Huang, Haozhong & Li, Xuan & Li, Songwei & Guo, Xiaoyu & Liu, Mingxin & Wang, Tongying & Lei, Han, 2023. "Evaluating the effect of refined flow channels in a developed biomimetic flow field on PEMFC performance," Energy, Elsevier, vol. 266(C).
- Sarjuni, C.A. & Lim, B.H. & Majlan, E.H. & Rosli, M.I., 2024. "A review: Fluid dynamic and mass transport behaviour in a proton exchange membrane fuel cell stack," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qiao, Jia Nan & Guo, Hang & Ye, Fang & Chen, Hao, 2024. "A nonlinear contraction channel design inspired by typical mathematical curves: Boosting net power and water discharge of PEM fuel cells," Applied Energy, Elsevier, vol. 357(C).
- Yulin Wang & Xiangling Liao & Guokun Liu & Haokai Xu & Chao Guan & Huixuan Wang & Hua Li & Wei He & Yanzhou Qin, 2023. "Review of Flow Field Designs for Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 16(10), pages 1-54, May.
- Yu, Rui Jiao & Guo, Hang & Ye, Fang & Chen, Hao, 2022. "Multi-parameter optimization of stepwise distribution of parameters of gas diffusion layer and catalyst layer for PEMFC peak power density," Applied Energy, Elsevier, vol. 324(C).
- Zijun Li & Jianguo Wang & Shubo Wang & Weiwei Li & Xiaofeng Xie, 2023. "Liquid Water Transport Characteristics and Droplet Dynamics of Proton Exchange Membrane Fuel Cells with 3D Wave Channel," Energies, MDPI, vol. 16(16), pages 1-19, August.
- Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
- Rostami, Leila & Haghshenasfard, Masoud & Sadeghi, Morteza & Zhiani, Mohammad, 2022. "A 3D CFD model of novel flow channel designs based on the serpentine and the parallel design for performance enhancement of PEMFC," Energy, Elsevier, vol. 258(C).
- Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
- Gong, Fan & Yang, Xiaolong & Zhang, Xun & Mao, Zongqiang & Gao, Weitao & Wang, Cheng, 2023. "The study of Tesla valve flow field on the net power of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 329(C).
- Xia, Zhifeng & Chen, Huicui & Zhang, Ruirui & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Behavior analysis of PEMFC with geometric configuration variation during multiple-step loading reduction process," Applied Energy, Elsevier, vol. 349(C).
- Danqi Su & Jiayang Zheng & Junjie Ma & Zizhe Dong & Zhangjie Chen & Yanzhou Qin, 2023. "Application of Machine Learning in Fuel Cell Research," Energies, MDPI, vol. 16(11), pages 1-32, May.
- Bai, Fan & Quan, Hong-Bing & Yin, Ren-Jie & Zhang, Zhuo & Jin, Shu-Qi & He, Pu & Mu, Yu-Tong & Gong, Xiao-Ming & Tao, Wen-Quan, 2022. "Three-dimensional multi-field digital twin technology for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 324(C).
- Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
- Perng, Shiang-Wuu & Chien, Tsai-Chieh & Horng, Rong-Fang & Wu, Horng-Wen, 2019. "Performance enhancement of a plate methanol steam reformer by ribs installed in the reformer channel," Energy, Elsevier, vol. 167(C), pages 588-601.
- Chen, Hao & Guo, Hang & Ye, Fang & MA, Chong Fang, 2022. "Cell performance and flow losses of proton exchange membrane fuel cells with orientated-type flow channels," Renewable Energy, Elsevier, vol. 181(C), pages 1338-1352.
- Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
- Baricci, Andrea & Mereu, Riccardo & Messaggi, Mirko & Zago, Matteo & Inzoli, Fabio & Casalegno, Andrea, 2017. "Application of computational fluid dynamics to the analysis of geometrical features in PEM fuel cells flow fields with the aid of impedance spectroscopy," Applied Energy, Elsevier, vol. 205(C), pages 670-682.
- Perng, Shiang-Wuu & Horng, Rong-Fang & Wu, Horng-Wen, 2017. "Effect of a diffuser on performance enhancement of a cylindrical methanol steam reformer by computational fluid dynamic analysis," Applied Energy, Elsevier, vol. 206(C), pages 312-328.
- Guo, Hang & Zhao, Qiang & Ye, Fang, 2022. "An experimental study on gas and liquid two-phase flow in orientated-type flow channels of proton exchange membrane fuel cells by using a side-view method," Renewable Energy, Elsevier, vol. 188(C), pages 603-618.
- Masli Irwan Rosli & Bee Huah Lim & Edy Herianto Majlan & Teuku Husaini & Wan Ramli Wan Daud & Soh Fong Lim, 2022. "Performance Analysis of PEMFC with Single-Channel and Multi-Channels on the Impact of the Geometrical Model," Energies, MDPI, vol. 15(21), pages 1-14, October.
- Zhou, Yu & Chen, Ben & Meng, Kai & Zhou, Haoran & Chen, Wenshang & Zhang, Ning & Deng, Qihao & Yang, Guanghua & Tu, Zhengkai, 2023. "Optimal design of a cathode flow field for performance enhancement of PEM fuel cell," Applied Energy, Elsevier, vol. 343(C).
More about this item
Keywords
bionic design; proton exchange membrane fuel cell; flow field; numerical modelling; mass transfer;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6044-:d:640982. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.