IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5926-d638334.html
   My bibliography  Save this article

Improved Air-Conditioning Demand Response of Connected Communities over Individually Optimized Buildings

Author

Listed:
  • Nicolas A. Campbell

    (School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ 85281, USA)

  • Patrick E. Phelan

    (School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ 85281, USA)

  • Miguel Peinado-Guerrero

    (School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ 85281, USA)

  • Jesus R. Villalobos

    (School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ 85281, USA)

Abstract

Connected communities potentially offer much greater demand response capabilities over singular building energy management systems (BEMS) through an increase of connectivity. The potential increase in benefits from this next step in connectivity is still under investigation, especially when applied to existing buildings. This work utilizes EnergyPlus simulation results on eight different commercial prototype buildings to estimate the potential savings on peak demand and energy costs using a mixed-integer linear programming model. This model is used in two cases: a fully connected community and eight separate buildings with BEMS. The connected community is optimized using all zones as variables, while the individual buildings are optimized separately and then aggregated. These optimization problems are run for a range of individual zone flexibility values. The results indicate that a connected community offered 60.0 % and 24.8 % more peak demand savings for low and high flexibility scenarios, relative to individually optimized buildings. Energy cost optimization results show only marginally better savings of 2.9 % and 6.1 % for low and high flexibility, respectively.

Suggested Citation

  • Nicolas A. Campbell & Patrick E. Phelan & Miguel Peinado-Guerrero & Jesus R. Villalobos, 2021. "Improved Air-Conditioning Demand Response of Connected Communities over Individually Optimized Buildings," Energies, MDPI, vol. 14(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5926-:d:638334
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5926/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5926/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yessenia Olazo-Gómez & Héctor Herrada & Sergio Castaño & Jesús Arce & Jesús P. Xamán & María José Jiménez, 2020. "Data-Based RC Dynamic Modelling to Assessing the In-Situ Thermal Performance of Buildings. Analysis of Several Key Aspects in a Simplified Reference Case toward the Application at On-Board Monitoring ," Energies, MDPI, vol. 13(18), pages 1-30, September.
    2. Nam-Kyu Kim & Myung-Hyun Shim & Dongjun Won, 2018. "Building Energy Management Strategy Using an HVAC System and Energy Storage System," Energies, MDPI, vol. 11(10), pages 1-15, October.
    3. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    4. Guille, Christophe & Gross, George, 2009. "A conceptual framework for the vehicle-to-grid (V2G) implementation," Energy Policy, Elsevier, vol. 37(11), pages 4379-4390, November.
    5. Sehar, Fakeha & Pipattanasomporn, Manisa & Rahman, Saifur, 2016. "An energy management model to study energy and peak power savings from PV and storage in demand responsive buildings," Applied Energy, Elsevier, vol. 173(C), pages 406-417.
    6. Davide Deltetto & Davide Coraci & Giuseppe Pinto & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Exploring the Potentialities of Deep Reinforcement Learning for Incentive-Based Demand Response in a Cluster of Small Commercial Buildings," Energies, MDPI, vol. 14(10), pages 1-25, May.
    7. Morais, Hugo & Kádár, Péter & Faria, Pedro & Vale, Zita A. & Khodr, H.M., 2010. "Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming," Renewable Energy, Elsevier, vol. 35(1), pages 151-156.
    8. Lakshmanan, Venkatachalam & Marinelli, Mattia & Kosek, Anna M. & Nørgård, Per B. & Bindner, Henrik W., 2016. "Impact of thermostatically controlled loads' demand response activation on aggregated power: A field experiment," Energy, Elsevier, vol. 94(C), pages 705-714.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Triolo, Ryan C. & Rajagopal, Ram & Wolak, Frank A. & de Chalendar, Jacques A., 2023. "Estimating cooling demand flexibility in a district energy system using temperature set point changes from selected buildings," Applied Energy, Elsevier, vol. 336(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Ehsan Sedgh Gooya, 2021. "Optimal Sizing and Energy Management of Microgrids with Vehicle-to-Grid Technology: A Critical Review and Future Trends," Energies, MDPI, vol. 14(14), pages 1-45, July.
    2. Chu, Wenfeng & Zhang, Yu & Wang, Donglin & He, Wei & Zhang, Sheng & Hu, Zhongting & Zhou, Jinzhi, 2023. "Capacity determination of renewable energy systems, electricity storage, and heat storage in grid-interactive buildings," Energy, Elsevier, vol. 285(C).
    3. Luo, Na & Langevin, Jared & Chandra-Putra, Handi & Lee, Sang Hoon, 2022. "Quantifying the effect of multiple load flexibility strategies on commercial building electricity demand and services via surrogate modeling," Applied Energy, Elsevier, vol. 309(C).
    4. Chen, Yongbao & Xu, Peng & Chen, Zhe & Wang, Hongxin & Sha, Huajing & Ji, Ying & Zhang, Yongming & Dou, Qiang & Wang, Sheng, 2020. "Experimental investigation of demand response potential of buildings: Combined passive thermal mass and active storage," Applied Energy, Elsevier, vol. 280(C).
    5. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    6. Mubbashir Ali & Jussi Ekström & Matti Lehtonen, 2018. "Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems," Energies, MDPI, vol. 11(5), pages 1-11, May.
    7. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    8. Chaouachi, Aymen & Bompard, Ettore & Fulli, Gianluca & Masera, Marcelo & De Gennaro, Michele & Paffumi, Elena, 2016. "Assessment framework for EV and PV synergies in emerging distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 719-728.
    9. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    10. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    11. Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
    12. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
    13. Jayawardena, A.V. & Meegahapola, L.G. & Robinson, D.A. & Perera, S., 2015. "Microgrid capability diagram: A tool for optimal grid-tied operation," Renewable Energy, Elsevier, vol. 74(C), pages 497-504.
    14. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    15. Abbaspour, M. & Satkin, M. & Mohammadi-Ivatloo, B. & Hoseinzadeh Lotfi, F. & Noorollahi, Y., 2013. "Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES)," Renewable Energy, Elsevier, vol. 51(C), pages 53-59.
    16. Sousa, Tiago & Morais, Hugo & Soares, João & Vale, Zita, 2012. "Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints," Applied Energy, Elsevier, vol. 96(C), pages 183-193.
    17. Sharifah Nurain Syed Nasir & Norasikin Ahmad Ludin & Ahmad Afif Safwan Mohd Radzi & Mirratul Mukminah Junedi & Norhashimah Ramli & Anezah Marsan & Zul Fauzi Azlan Mohd & Muhamad Roszaini Roslan & Zulf, 2023. "Lockdown impact on energy consumption in university building," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 12051-12070, October.
    18. Michele Roccotelli & Alessandro Rinaldi & Maria Pia Fanti & Francesco Iannone, 2020. "Building Energy Management for Passive Cooling Based on Stochastic Occupants Behavior Evaluation," Energies, MDPI, vol. 14(1), pages 1-24, December.
    19. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    20. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5926-:d:638334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.