IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5923-d638155.html
   My bibliography  Save this article

Theoretical Analysis of Vuilleumier’s Hypothetical Engine and Cooler

Author

Listed:
  • Qi Liu

    (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
    College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
    Research Institute of Hunan University in Chongqing, Chongqing 401120, China)

  • Baojun Luo

    (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
    College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
    Research Institute of Hunan University in Chongqing, Chongqing 401120, China)

  • Jiayao Yang

    (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
    College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China)

  • Qun Gao

    (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
    College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China)

  • Jingping Liu

    (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
    College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
    Research Institute of Hunan University in Chongqing, Chongqing 401120, China)

  • Yuexin Huang

    (Thermolift Inc., 209 Advanced Energy Center, 1000 Innovation Road, Stony Brook, NY 11794, USA)

  • Chengqin Ren

    (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
    College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China)

Abstract

Vuilleumier machines are a promising technology for heating. Respective performances of Vuilleumier’s engine and cooler are generally unclear. In Stirling machines, performances can be determined based on PV power flow and heat flow methods. In this work, respective performances based on two methods in current Vuilleumier models were investigated. It was found that PV power flow and heat flow methods in current Vuilleumier models were ineffective for analysis of respective performances due to there being no piston as a boundary between Vuilleumier’s engine and cooler. Then, a virtual piston was assumed, and a virtual piston based Vuilleumier model (VPBVM) was developed. The relative Carnot efficiencies of the obtained engine and cooler were 53~64% and 43~49%, respectively, at conditions of 550 °C hot temperature, 50~70 °C warm temperature, and −20~10 °C cold temperature. The results indicated that respective performances obtained in VPBVM were reasonable. Moreover, the engine’s compression ratios could be obtained in VPBVM and were 1.2~1.24. Thus, VPBVM could be effective for the analysis of the Vuilleumier machine’s engine and cooler.

Suggested Citation

  • Qi Liu & Baojun Luo & Jiayao Yang & Qun Gao & Jingping Liu & Yuexin Huang & Chengqin Ren, 2021. "Theoretical Analysis of Vuilleumier’s Hypothetical Engine and Cooler," Energies, MDPI, vol. 14(18), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5923-:d:638155
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5923/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5923/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jose Egas & Don M. Clucas, 2018. "Stirling Engine Configuration Selection," Energies, MDPI, vol. 11(3), pages 1-22, March.
    2. Cheng, Chin-Hsiang & Yang, Hang-Suin & Keong, Lam, 2013. "Theoretical and experimental study of a 300-W beta-type Stirling engine," Energy, Elsevier, vol. 59(C), pages 590-599.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Hao & Wang, Kai & Yu, Peifeng & Ni, Mingjiang & Xiao, Gang, 2021. "A third-order numerical model and transient characterization of a β-type Stirling engine," Energy, Elsevier, vol. 222(C).
    2. Rahmati, A. & Varedi-Koulaei, S.M. & Ahmadi, M.H. & Ahmadi, H., 2022. "Dynamic synthesis of the alpha-type stirling engine based on reducing the output velocity fluctuations using Metaheuristic algorithms," Energy, Elsevier, vol. 238(PB).
    3. Ni, Mingjiang & Shi, Bingwei & Xiao, Gang & Peng, Hao & Sultan, Umair & Wang, Shurong & Luo, Zhongyang & Cen, Kefa, 2016. "Improved Simple Analytical Model and experimental study of a 100W β-type Stirling engine," Applied Energy, Elsevier, vol. 169(C), pages 768-787.
    4. Jacek Kropiwnicki & Mariusz Furmanek, 2020. "A Theoretical and Experimental Study of Moderate Temperature Alfa Type Stirling Engines," Energies, MDPI, vol. 13(7), pages 1-21, April.
    5. Takeuchi, Makoto & Suzuki, Shinji & Abe, Yutaka, 2021. "Development of a low-temperature-difference indirect-heating kinematic Stirling engine," Energy, Elsevier, vol. 229(C).
    6. İncili, Veysel & Karaca Dolgun, Gülşah & Keçebaş, Ali & Ural, Tolga, 2023. "Energy and exergy analyses of a coal-fired micro-CHP system coupled engine as a domestic solution," Energy, Elsevier, vol. 274(C).
    7. Lai, Xiaotian & Long, Rui & Liu, Zhichun & Liu, Wei, 2018. "Stirling engine powered reverse osmosis for brackish water desalination to utilize moderate temperature heat," Energy, Elsevier, vol. 165(PA), pages 916-930.
    8. Chin-Hsiang Cheng & Duc-Thuan Phung, 2021. "Numerical Optimization of the β-Type Stirling Engine Performance Using the Variable-Step Simplified Conjugate Gradient Method," Energies, MDPI, vol. 14(23), pages 1-14, November.
    9. Miguel Torres García & Elisa Carvajal Trujillo & José Antonio Vélez Godiño & David Sánchez Martínez, 2018. "Thermodynamic Model for Performance Analysis of a Stirling Engine Prototype," Energies, MDPI, vol. 11(10), pages 1-25, October.
    10. Solmaz, Hamit & Safieddin Ardebili, Seyed Mohammad & Aksoy, Fatih & Calam, Alper & Yılmaz, Emre & Arslan, Muhammed, 2020. "Optimization of the operating conditions of a beta-type rhombic drive stirling engine by using response surface method," Energy, Elsevier, vol. 198(C).
    11. Erol, Derviş & Yaman, Hayri & Doğan, Battal, 2017. "A review development of rhombic drive mechanism used in the Stirling engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1044-1067.
    12. Rui F. Costa & Brendan D. MacDonald, 2018. "Comparison of the Net Work Output between Stirling and Ericsson Cycles," Energies, MDPI, vol. 11(3), pages 1-16, March.
    13. Eid, Eldesouki I. & Khalaf-Allah, Reda A. & Soliman, Ahmed M. & Easa, Ammar S., 2019. "Performance of a beta Stirling refrigerator with tubular evaporator and condenser having inserted twisted tapes and driven by a solar energy heat engine," Renewable Energy, Elsevier, vol. 135(C), pages 1314-1326.
    14. Yang, Hang-Suin & Cheng, Chin-Hsiang & Huang, Shang-Ting, 2018. "A complete model for dynamic simulation of a 1-kW class beta-type Stirling engine with rhombic-drive mechanism," Energy, Elsevier, vol. 161(C), pages 892-906.
    15. Hua-Ju Shih, 2019. "An Analysis Model Combining Gamma-Type Stirling Engine and Power Converter," Energies, MDPI, vol. 12(7), pages 1-18, April.
    16. Erol, Derviş, 2024. "An experimental comparative study of the effects on the engine performance of using three different motion mechanisms in a beta-configuration Stirling engine," Energy, Elsevier, vol. 293(C).
    17. Altin, Murat & Okur, Melih & Ipci, Duygu & Halis, Serdar & Karabulut, Halit, 2018. "Thermodynamic and dynamic analysis of an alpha type Stirling engine with Scotch Yoke mechanism," Energy, Elsevier, vol. 148(C), pages 855-865.
    18. Luo, Zhongyang & Sultan, Umair & Ni, Mingjiang & Peng, Hao & Shi, Bingwei & Xiao, Gang, 2016. "Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms," Renewable Energy, Elsevier, vol. 94(C), pages 114-125.
    19. Karabulut, Halit & Okur, Melih & Halis, Serdar & Altin, Murat, 2019. "Thermodynamic, dynamic and flow friction analysis of a Stirling engine with Scotch yoke piston driving mechanism," Energy, Elsevier, vol. 168(C), pages 169-181.
    20. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5923-:d:638155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.