IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5713-d633104.html
   My bibliography  Save this article

Development and Evaluation of Velocity Predictive Optimal Energy Management Strategies in Intelligent and Connected Hybrid Electric Vehicles

Author

Listed:
  • Aaron Rabinowitz

    (Department of Systems Engineering, Colorado State University, Fort Collins, CO 80523, USA)

  • Farhang Motallebi Araghi

    (Department of Mechanical and Aerospace Engineering, Western Michigan University, Kalamazoo, MI 49008, USA)

  • Tushar Gaikwad

    (Department of Mechanical and Aerospace Engineering, Western Michigan University, Kalamazoo, MI 49008, USA)

  • Zachary D. Asher

    (Department of Mechanical and Aerospace Engineering, Western Michigan University, Kalamazoo, MI 49008, USA)

  • Thomas H. Bradley

    (Department of Systems Engineering, Colorado State University, Fort Collins, CO 80523, USA)

Abstract

In this study, a thorough and definitive evaluation of Predictive Optimal Energy Management Strategy (POEMS) applications in connected vehicles using 10 to 20 s predicted velocity is conducted for a Hybrid Electric Vehicle (HEV). The presented methodology includes synchronous datasets gathered in Fort Collins, Colorado using a test vehicle equipped with sensors to measure ego vehicle position and motion and that of surrounding objects as well as receive Infrastructure to Vehicle (I2V) information. These datasets are utilized to compare the effect of different signal categories on prediction fidelity for different prediction horizons within a POEMS framework. Multiple artificial intelligence (AI) and machine learning (ML) algorithms use the collected data to output future vehicle velocity prediction models. The effects of different combinations of signals and different models on prediction fidelity in various prediction windows are explored. All of these combinations are ultimately addressed where the rubber meets the road: fuel economy (FE) enabled from POEMS. FE optimization is performed using Model Predictive Control (MPC) with a Dynamic Programming (DP) optimizer. FE improvements from MPC control at various prediction time horizons are compared to that of full-cycle DP. All FE results are determined using high-fidelity simulations of an Autonomie 2010 Toyota Prius model. The full-cycle DP POEMS provides the theoretical upper limit on fuel economy (FE) improvement achievable with POEMS but is not currently practical for real-world implementation. Perfect prediction MPC (PP-MPC) represents the upper limit of FE improvement practically achievable with POEMS. Real-Prediction MPC (RP-MPC) can provide nearly equivalent FE improvement when used with high-fidelity predictions. Constant-Velocity MPC (CV-MPC) uses a constant speed prediction and serves as a “null” POEMS. Results showed that RP-MPC, enabled by high-fidelity ego future speed prediction, led to significant FE improvement over baseline nearly matching that of PP-MPC.

Suggested Citation

  • Aaron Rabinowitz & Farhang Motallebi Araghi & Tushar Gaikwad & Zachary D. Asher & Thomas H. Bradley, 2021. "Development and Evaluation of Velocity Predictive Optimal Energy Management Strategies in Intelligent and Connected Hybrid Electric Vehicles," Energies, MDPI, vol. 14(18), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5713-:d:633104
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5713/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5713/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Atabani, A.E. & Badruddin, Irfan Anjum & Mekhilef, S. & Silitonga, A.S., 2011. "A review on global fuel economy standards, labels and technologies in the transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4586-4610.
    2. Gschwendtner, Christine & Sinsel, Simon R. & Stephan, Annegret, 2021. "Vehicle-to-X (V2X) implementation: An overview of predominate trial configurations and technical, social and regulatory challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marouane Adnane & Ahmed Khoumsi & João Pedro F. Trovão, 2023. "Efficient Management of Energy Consumption of Electric Vehicles Using Machine Learning—A Systematic and Comprehensive Survey," Energies, MDPI, vol. 16(13), pages 1-39, June.
    2. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    3. Jaikumar Shanmuganathan & Aruldoss Albert Victoire & Gobu Balraj & Amalraj Victoire, 2022. "Deep Learning LSTM Recurrent Neural Network Model for Prediction of Electric Vehicle Charging Demand," Sustainability, MDPI, vol. 14(16), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    2. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    3. Bixuan Sun & Jeffrey Apland, 2019. "Operational planning of public transit with economic and environmental goals: application to the Minneapolis–St. Paul bus system," Public Transport, Springer, vol. 11(2), pages 237-267, August.
    4. Park, Sung-Won & Son, Sung-Yong, 2023. "Techno-economic analysis for the electric vehicle battery aging management of charge point operator," Energy, Elsevier, vol. 280(C).
    5. Rishabh Ghotge & Koen Philippe Nijssen & Jan Anne Annema & Zofia Lukszo, 2022. "Use before You Choose: What Do EV Drivers Think about V2G after Experiencing It?," Energies, MDPI, vol. 15(13), pages 1-22, July.
    6. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2024. "Uncertainty analysis of the electric vehicle potential for a household to enhance robustness in decision on the EV/V2H technologies," Applied Energy, Elsevier, vol. 365(C).
    7. Xiangyang Xu & Xiaoxiao Wu & Mick Jordan & Peng Dong & Yang Liu, 2018. "Coordinated Engine-Start Control of Single-Motor P2 Hybrid Electric Vehicles with Respect to Different Driving Situations," Energies, MDPI, vol. 11(1), pages 1-23, January.
    8. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    9. Sara Marques & Luis Reis & João L. Afonso & Carla Silva, 2016. "Energy rating methodology for light-duty vehicles: geographical impact," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(5), pages 1501-1519, October.
    10. Małgorzata Ćwil & Witold Bartnik & Sebastian Jarzębowski, 2021. "Railway Vehicle Energy Efficiency as a Key Factor in Creating Sustainable Transportation Systems," Energies, MDPI, vol. 14(16), pages 1-14, August.
    11. Abubakr, Hussein & Lashab, Abderezak & Vasquez, Juan C. & Mohamed, Tarek Hassan & Guerrero, Josep M., 2023. "Novel V2G regulation scheme using Dual-PSS for PV islanded microgrid," Applied Energy, Elsevier, vol. 340(C).
    12. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2014. "The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system," Energy, Elsevier, vol. 71(C), pages 556-568.
    13. Mahlia, T.M.I. & Tohno, S. & Tezuka, T., 2012. "History and current status of the motor vehicle energy labeling and its implementation possibilities in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1828-1844.
    14. Hao, Han & Wang, Sinan & Liu, Zongwei & Zhao, Fuquan, 2016. "The impact of stepped fuel economy targets on automaker's light-weighting strategy: The China case," Energy, Elsevier, vol. 94(C), pages 755-765.
    15. Radpour, Saeidreza & Hossain Mondal, Md Alam & Kumar, Amit, 2017. "Market penetration modeling of high energy efficiency appliances in the residential sector," Energy, Elsevier, vol. 134(C), pages 951-961.
    16. Xian Zhao & Siqi Wang & Xiaoyue Wang, 2018. "Characteristics and Trends of Research on New Energy Vehicle Reliability Based on the Web of Science," Sustainability, MDPI, vol. 10(10), pages 1-25, October.
    17. Skeete, Jean-Paul, 2017. "Examining the role of policy design and policy interaction in EU automotive emissions performance gaps," Energy Policy, Elsevier, vol. 104(C), pages 373-381.
    18. Zhou, Yuekuan, 2022. "Energy sharing and trading on a novel spatiotemporal energy network in Guangdong-Hong Kong-Macao Greater Bay Area," Applied Energy, Elsevier, vol. 318(C).
    19. Lo, Kevin, 2014. "A critical review of China's rapidly developing renewable energy and energy efficiency policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 508-516.
    20. Förster, Robert & Harding, Sebastian & Buhl, Hans Ulrich, 2024. "Unleashing the economic and ecological potential of energy flexibility: Attractiveness of real-time electricity tariffs in energy crises," Energy Policy, Elsevier, vol. 185(C).

    More about this item

    Keywords

    HEV; V2X; fuel economy; Dynamic Programming; MPC; ANN; LSTM; systems engineering;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5713-:d:633104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.