IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4970-d613824.html
   My bibliography  Save this article

Experimental Study on Heat Transfer and Adsorption Cooling Performance of MIL-101/Few Layer Graphene Composite

Author

Listed:
  • Yu Yin

    (Department of Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
    Co-first author.)

  • Junpeng Shao

    (Department of Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
    Co-first author.)

  • Lin Zhang

    (Department of Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China)

  • Qun Cui

    (Department of Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China)

  • Haiyan Wang

    (Department of Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China)

Abstract

MIL-101 is a promising metal-organic frameworks (MOFs) material in adsorption chiller application due to its high adsorption capacity for water and excellent adsorption/desorption cyclic stability. Few layer graphene (FLG) as the thermal conductive additive was added into MIL-101 to improve inferior heat transfer of MIL-101 in the adsorption cooling process. The heat transfer characteristic of MIL-101/FLG adsorber and the adsorption cooling performance of the MIL-101/FLG-water working pair were studied. Results show that thermal conductivity of MIL-101/20%FLG composite is 5.79-6.54 times that of MIL-101. Adding FLG is conducive to the formation of heat transfer channels in MIL-101/FLG adsorber and the rapid removal of adsorption heat. The heating and cooling rate of MIL-101/FLG adsorber is ~2.2 times that of MIL-101 adsorber. Under typical adsorption water chiller conditions, the specific cooling power (SCP) and coefficient of performance (COP) of the MIL-101/FLG-water working pair is 72.2–81.0 W kg −1 and 0.187–0.202, respectively, at desorption temperatures of 70 °C and 90 °C, which is 1.43–1.56 times higher than the MIL-101-water working pair. The excellent structural and adsorption/desorption cyclic stability of MIL-101/FLG composite is verified after 50 consecutive cycles. It can provide a promising adsorbent candidate (MIL-101/FLG composite) in adsorption water chiller process.

Suggested Citation

  • Yu Yin & Junpeng Shao & Lin Zhang & Qun Cui & Haiyan Wang, 2021. "Experimental Study on Heat Transfer and Adsorption Cooling Performance of MIL-101/Few Layer Graphene Composite," Energies, MDPI, vol. 14(16), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4970-:d:613824
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4970/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4970/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salman Ajib & Ali Alahmer, 2019. "Solar Cooling Technologies," Chapters, in: Ibrahim H. Al-Bahadly (ed.), Energy Conversion - Current Technologies and Future Trends, IntechOpen.
    2. He, Fang & Nagano, Katsunori & Togawa, Junya, 2020. "Experimental study and development of a low-cost 1 kW adsorption chiller using composite adsorbent based on natural mesoporous material," Energy, Elsevier, vol. 209(C).
    3. Cui, Qun & Tao, Gang & Chen, Haijun & Guo, Xinyue & Yao, Huqing, 2005. "Environmentally benign working pairs for adsorption refrigeration," Energy, Elsevier, vol. 30(2), pages 261-271.
    4. Zimmermann, Severin & Meijer, Ingmar & Tiwari, Manish K. & Paredes, Stephan & Michel, Bruno & Poulikakos, Dimos, 2012. "Aquasar: A hot water cooled data center with direct energy reuse," Energy, Elsevier, vol. 43(1), pages 237-245.
    5. Myat, Aung & Kim Choon, Ng & Thu, Kyaw & Kim, Young-Deuk, 2013. "Experimental investigation on the optimal performance of Zeolite–water adsorption chiller," Applied Energy, Elsevier, vol. 102(C), pages 582-590.
    6. Choudhury, Biplab & Saha, Bidyut Baran & Chatterjee, Pradip K. & Sarkar, Jyoti Prakas, 2013. "An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling," Applied Energy, Elsevier, vol. 104(C), pages 554-567.
    7. Eric Laurenz & Gerrit Füldner & Lena Schnabel & Gerhard Schmitz, 2020. "A Novel Approach for the Determination of Sorption Equilibria and Sorption Enthalpy Used for MOF Aluminium Fumarate with Water," Energies, MDPI, vol. 13(11), pages 1-10, June.
    8. Allouhi, A. & Kousksou, T. & Jamil, A. & El Rhafiki, T. & Mourad, Y. & Zeraouli, Y., 2015. "Optimal working pairs for solar adsorption cooling applications," Energy, Elsevier, vol. 79(C), pages 235-247.
    9. Ma, Liejun & Yang, Huan & Wu, Qi & Yin, Yu & Liu, Zongjian & Cui, Qun & Wang, Haiyan, 2015. "Study on adsorption refrigeration performance of MIL-101-isobutane working pair," Energy, Elsevier, vol. 93(P1), pages 786-794.
    10. Wang, Ji & Hu, Eric & Blazewicz, Antoni & Ezzat, Akram W., 2018. "Simulation of accumulated performance of a solar thermal powered adsorption refrigeration system with daily climate conditions," Energy, Elsevier, vol. 165(PA), pages 487-498.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Zhou & Yin, Yu & Shao, Junpeng & Liu, Yerong & Zhang, Lin & Cui, Qun & Wang, Haiyan, 2020. "Study on heat transfer and cooling performance of copper foams cured MIL-101 adsorption unit tube," Energy, Elsevier, vol. 191(C).
    2. Solmuş, İsmail & Yamalı, Cemil & Yıldırım, Cihan & Bilen, Kadir, 2015. "Transient behavior of a cylindrical adsorbent bed during the adsorption process," Applied Energy, Elsevier, vol. 142(C), pages 115-124.
    3. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    4. Sapienza, Alessio & Gullì, Giuseppe & Calabrese, Luigi & Palomba, Valeria & Frazzica, Andrea & Brancato, Vincenza & La Rosa, Davide & Vasta, Salvatore & Freni, Angelo & Bonaccorsi, Lucio & Cacciola, G, 2016. "An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers," Applied Energy, Elsevier, vol. 179(C), pages 929-938.
    5. Frazzica, A. & Palomba, V. & Dawoud, B. & Gullì, G. & Brancato, V. & Sapienza, A. & Vasta, S. & Freni, A. & Costa, F. & Restuccia, G., 2016. "Design, realization and testing of an adsorption refrigerator based on activated carbon/ethanol working pair," Applied Energy, Elsevier, vol. 174(C), pages 15-24.
    6. Habib, Khairul & Choudhury, Biplab & Chatterjee, Pradip Kumar & Saha, Bidyut Baran, 2013. "Study on a solar heat driven dual-mode adsorption chiller," Energy, Elsevier, vol. 63(C), pages 133-141.
    7. Piotr Boruta & Tomasz Bujok & Łukasz Mika & Karol Sztekler, 2021. "Adsorbents, Working Pairs and Coated Beds for Natural Refrigerants in Adsorption Chillers—State of the Art," Energies, MDPI, vol. 14(15), pages 1-41, August.
    8. He, Fang & Nagano, Katsunori & Seol, Sung-Hoon & Togawa, Junya, 2022. "Thermal performance improvement of AHP using corrugated heat exchanger by dip-coating method with mass recovery," Energy, Elsevier, vol. 239(PE).
    9. He, Fang & Nagano, Katsunori & Togawa, Junya, 2023. "Performance prediction of an adsorption chiller combined with heat recovery and mass recovery by a three-dimensional model," Energy, Elsevier, vol. 277(C).
    10. Mitra, Sourav & Thu, Kyaw & Saha, Bidyut Baran & Dutta, Pradip, 2017. "Performance evaluation and determination of minimum desorption temperature of a two-stage air cooled silica gel/water adsorption system," Applied Energy, Elsevier, vol. 206(C), pages 507-518.
    11. Ma, Liejun & Yang, Huan & Wu, Qi & Yin, Yu & Liu, Zongjian & Cui, Qun & Wang, Haiyan, 2015. "Study on adsorption refrigeration performance of MIL-101-isobutane working pair," Energy, Elsevier, vol. 93(P1), pages 786-794.
    12. Prieto, Alejandro & Knaack, Ulrich & Auer, Thomas & Klein, Tillmann, 2019. "COOLFACADE: State-of-the-art review and evaluation of solar cooling technologies on their potential for façade integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 395-414.
    13. Marcin Sowa & Karol Sztekler & Agata Mlonka-Mędrala & Łukasz Mika, 2023. "An Overview of Developments In Silica Gel Matrix Composite Sorbents for Adsorption Chillers with Desalination Function," Energies, MDPI, vol. 16(15), pages 1-34, August.
    14. Allouhi, A. & Kousksou, T. & Jamil, A. & Agrouaz, Y. & Bouhal, T. & Saidur, R. & Benbassou, A., 2016. "Performance evaluation of solar adsorption cooling systems for vaccine preservation in Sub-Saharan Africa," Applied Energy, Elsevier, vol. 170(C), pages 232-241.
    15. Askalany, Ahmed A. & Ernst, Sebastian-Johannes & Hügenell, Philipp P.C. & Bart, Hans-Jörg & Henninger, Stefan K. & Alsaman, Ahmed S., 2017. "High potential of employing bentonite in adsorption cooling systems driven by low grade heat source temperatures," Energy, Elsevier, vol. 141(C), pages 782-791.
    16. Jung-Gil Lee & Kyung Jin Bae & Oh Kyung Kwon, 2020. "Performance Investigation of a Two-Bed Type Adsorption Chiller with Various Adsorbents," Energies, MDPI, vol. 13(10), pages 1-16, May.
    17. Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
    18. El-Sharkawy, Ibrahim I. & AbdelMeguid, Hossam & Saha, Bidyut Baran, 2014. "Potential application of solar powered adsorption cooling systems in the Middle East," Applied Energy, Elsevier, vol. 126(C), pages 235-245.
    19. Ozsezen, Ahmet Necati & Canakci, Mustafa, 2011. "Performance and combustion characteristics of alcohol–gasoline blends at wide-open throttle," Energy, Elsevier, vol. 36(5), pages 2747-2752.
    20. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4970-:d:613824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.