IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4489-d600901.html
   My bibliography  Save this article

Study on Mineral Compositions of Direct Carbonated Steel Slag by QXRD, TG, FTIR, and XPS

Author

Listed:
  • Xue Wang

    (School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
    Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China)

  • Wen Ni

    (School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
    Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China)

  • Jiajie Li

    (School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
    Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China)

  • Siqi Zhang

    (School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
    Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China)

  • Keqing Li

    (School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
    Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China)

Abstract

Steel slag CO 2 sequestration helps mitigate global warming and decrease the stockpile of steel slag (SS). Through orthogonal design tests and single-factor tests, this paper evaluated the effects of the water/solid mass ratio (w/s), gypsum ratio (G/SS), molding pressure, and curing duration on uniaxial compressive strength (UCS) and CO 2 uptake of the compacts. The results indicated that high w/s enhanced both strength and CO 2 capture ability. The proper addition of gypsum helps promote UCS increase and CO 2 uptake of steel slag. In addition, increasing the molding pressure can significantly improve UCS without reducing CO 2 uptake. The optimum conditions in the study were a w/s of 0.20, G/SS of 1/16, and molding pressure of 27 MPa, under which conditions 1 d UCS and CO 2 uptake were 55.30 MPa and 12.36%, respectively. Microanalyses showed that gypsum activates mainly mayenite in steel slag. An increase in water addition also increased the hydration and carbonation products greatly, and the strengthened molding pressure had a significant densification effect on micro-pore structures. The study gives guidance in the application of steel slag in CO 2 capture and manufacturing green construction material.

Suggested Citation

  • Xue Wang & Wen Ni & Jiajie Li & Siqi Zhang & Keqing Li, 2021. "Study on Mineral Compositions of Direct Carbonated Steel Slag by QXRD, TG, FTIR, and XPS," Energies, MDPI, vol. 14(15), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4489-:d:600901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4489/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4489/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Said, Arshe & Laukkanen, Timo & Järvinen, Mika, 2016. "Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag," Applied Energy, Elsevier, vol. 177(C), pages 602-611.
    2. Ren, Shan & Aldahri, Tahani & Liu, Weizao & Liang, Bin, 2021. "CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Weifeng & Xu, Yuanlong & Wang, Qiuhua, 2022. "Coupled CO2 absorption and mineralization with low-concentration monoethanolamine," Energy, Elsevier, vol. 241(C).
    2. Kamal Jawher Khudaida & Diganta Bhusan Das, 2020. "A Numerical Analysis of the Effects of Supercritical CO 2 Injection on CO 2 Storage Capacities of Geological Formations," Clean Technol., MDPI, vol. 2(3), pages 1-32, September.
    3. Zhou, Hui & Park, Ah-Hyung Alissa, 2020. "Bio-energy with carbon capture and storage via alkaline thermal Treatment: Production of high purity H2 from wet wheat straw grass with CO2 capture," Applied Energy, Elsevier, vol. 264(C).
    4. Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
    5. Ren, Shan & Aldahri, Tahani & Liu, Weizao & Liang, Bin, 2021. "CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments," Energy, Elsevier, vol. 214(C).
    6. He, Minyu & Teng, Liumei & Gao, Yuxiang & Rohani, Sohrab & Ren, Shan & Li, Jiangling & Yang, Jian & Liu, Qingcai & Liu, Weizao, 2022. "Simultaneous CO2 mineral sequestration and rutile beneficiation by using titanium-bearing blast furnace slag: Process description and optimization," Energy, Elsevier, vol. 248(C).
    7. Zevenhoven, Ron & Legendre, Daniel & Said, Arshe & Järvinen, Mika, 2019. "Carbon dioxide dissolution and ammonia losses in bubble columns for precipitated calcium carbonate (PCC) production," Energy, Elsevier, vol. 175(C), pages 1121-1129.
    8. Li, Wei & Lu, Can & Ding, Yi & Zhang, Yan-Wu, 2017. "The impacts of policy mix for resolving overcapacity in heavy chemical industry and operating national carbon emission trading market in China," Applied Energy, Elsevier, vol. 204(C), pages 509-524.
    9. Finn-Erik Digulla & Stefan Bringezu, 2023. "Comparative Life Cycle Assessment of Carbon Dioxide Mineralization Using Industrial Waste as Feedstock to Produce Cement Substitutes," Energies, MDPI, vol. 16(10), pages 1-22, May.
    10. Natalia Czaplicka & Donata Konopacka-Łyskawa, 2020. "Utilization of Gaseous Carbon Dioxide and Industrial Ca-Rich Waste for Calcium Carbonate Precipitation: A Review," Energies, MDPI, vol. 13(23), pages 1-25, November.
    11. Li, Hongwei & Tang, Zhigang & Li, Na & Cui, Longpeng & Mao, Xian-zhong, 2020. "Mechanism and process study on steel slag enhancement for CO2 capture by seawater," Applied Energy, Elsevier, vol. 276(C).
    12. Zhang, Baoxu & Chen, Yumin & Zhang, Bing & Peng, Ruifeng & Lu, Qiancheng & Yan, Weijie & Yu, Bo & Liu, Fang & Zhang, Junying, 2022. "Cyclic performance of coke oven gas - Steam reforming with assistance of steel slag derivates for high purity hydrogen production," Renewable Energy, Elsevier, vol. 184(C), pages 592-603.
    13. Duan, Wenjun & Han, Jiachen & Yang, Shuo & Wang, Zhimei & Yu, Qingbo & Zhan, Yaquan, 2024. "Understanding CO2 adsorption in layered double oxides synthesized by slag through kinetic and modelling techniques," Energy, Elsevier, vol. 297(C).
    14. Zhang, Weifeng & Xu, Yuanlong & Deng, Zhaoxiong & Wang, Qiuhua, 2022. "Experiments on continuous chemical desorption of CO2-rich solutions," Energy, Elsevier, vol. 239(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4489-:d:600901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.