IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v3y2010i4p686-695d7831.html
   My bibliography  Save this article

Energy Resources in the Future

Author

Listed:
  • Ken Tomabechi

    (Former Research Advisor, Central Research Institute of Electric Power Industries, 4-15-14 Nakahara, Mitaka-shi, Tokyo, 181-0005, Japan)

Abstract

Recent statistics indicate that in 2005 the world consumed about 0.5 ZJ (ZJ = 10 21 Joules) of energy. If one assumes that the future world population stabilizes at 10 billions, and the people consume a similar amount of energy per capita to that of the people in the presently developed countries, the world will need about 2 ZJ a year. A recent survey of the available future energy resources indicates that the energies recoverable from coal, oil and gas are only 23 ZJ, 6.7 ZJ and 6.4 ZJ, respectively. Other energy resources such as solar and wind have problems of fluctuation due to the weather conditions. However, the energy expected from known Uranium resources by breeder reactors is 227 ZJ and that from Lithium by fusion reactors is more than 175 ZJ. Therefore, it is important to make efforts to develop and use breeder reactors and fusion reactors to supply a major part of the energy need in the future.

Suggested Citation

  • Ken Tomabechi, 2010. "Energy Resources in the Future," Energies, MDPI, vol. 3(4), pages 1-10, April.
  • Handle: RePEc:gam:jeners:v:3:y:2010:i:4:p:686-695:d:7831
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/3/4/686/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/3/4/686/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ridoan Karim & Firdaus Muhammad-Sukki & Mohammad Ershadul Karim & Abu Bakar Munir & Imtiaz Mohammad Sifat & Siti Hawa Abu-Bakar & Nurul Aini Bani & Mohd Nabil Muhtazaruddin, 2018. "Legal and Regulatory Development of Nuclear Energy in Bangladesh," Energies, MDPI, vol. 11(10), pages 1-18, October.
    2. Juan F. Bárcenas Graniel & Jassiel V. H. Fontes & Hector F. Gomez Garcia & Rodolfo Silva, 2021. "Assessing Hydrokinetic Energy in the Mexican Caribbean: A Case Study in the Cozumel Channel," Energies, MDPI, vol. 14(15), pages 1-23, July.
    3. Shahrooz Hajighorbani & Mohd Amran Mohd Radzi & Mohd Zainal Abidin Ab Kadir & Suhaidi Shafie & Muhammad Ammirrul Atiqi Mohd Zainuri, 2016. "Implementing a Novel Hybrid Maximum Power Point Tracking Technique in DSP via Simulink/MATLAB under Partially Shaded Conditions," Energies, MDPI, vol. 9(2), pages 1-25, January.
    4. Adam Jan Zwierzyński & Wojciech Teper & Rafał Wiśniowski & Andrzej Gonet & Tomasz Buratowski & Tadeusz Uhl & Karol Seweryn, 2021. "Feasibility Study of Low Mass and Low Energy Consumption Drilling Devices for Future Space (Mining Surveying) Missions," Energies, MDPI, vol. 14(16), pages 1-17, August.
    5. Xuesong Yan & Lei Yang & Xunchao Zhang & Wenlong Zhan, 2017. "Concept of an Accelerator-Driven Advanced Nuclear Energy System," Energies, MDPI, vol. 10(7), pages 1-13, July.
    6. Jaw-Kuen Shiau & Min-Yi Lee & Yu-Chen Wei & Bo-Chih Chen, 2014. "Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies," Energies, MDPI, vol. 7(8), pages 1-20, August.
    7. Shahrooz Hajighorbani & Mohd Amran Mohd Radzi & Mohd Zainal Abidin Ab Kadir & Suhaidi Shafie, 2015. "Dual Search Maximum Power Point (DSMPP) Algorithm Based on Mathematical Analysis under Shaded Conditions," Energies, MDPI, vol. 8(10), pages 1-31, October.
    8. Ridoan Karim & Mohammad Ershadul Karim & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Nurul Aini Bani & Abu Bakar Munir & Ahmed Imran Kabir & Jorge Alfredo Ardila-Rey & Abdullahi Abubakar Mas’ud, 2018. "Nuclear Energy Development in Bangladesh: A Study of Opportunities and Challenges," Energies, MDPI, vol. 11(7), pages 1-15, June.
    9. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:3:y:2010:i:4:p:686-695:d:7831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.