IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p4037-d588383.html
   My bibliography  Save this article

Economic Optimization of Rotary Heat Exchangers Using CO 2 Pricing Scenarios Based on Validated Fluid Dynamic and Thermodynamic-Based Simulation

Author

Listed:
  • Eloy Melian

    (Institute for Industrial Ecology (INEC), Pforzheim University of Applied Sciences, 75175 Pforzheim, Germany)

  • Harald Klein

    (Plant and Process Technology, Technical University of Munich, 85748 Garching bei München, Germany)

  • Nikolaus Thißen

    (Plant and Process Technology, Technical University of Munich, 85748 Garching bei München, Germany)

Abstract

Rotary heat exchangers have been widely used in paint shops, combustion power plants, and in heating, ventilation, and air conditioning systems in buildings. For these processes, many types of heat exchangers are available in the market: Tube-shell heat exchangers, plate heat exchangers, and rotary heat exchangers, among others. For the rotary heat exchangers, the problem is that there is no net present value method and lifecycle assessment method-based optimization found in the literature. In this work, we address this issue: An optimization is carried out with help of an empirically validated simulation model, a life-cycle assessment model, an economical assessment, and an optimization algorithm. The objective function of the optimization simultaneously considers economic and environmental aspects by using different CO 2 pricing. Different CO 2 pricing scenarios lead to different optimization results. The ambient air empty tube velocity v a , 2.1 optimum was found at 1.2 m/s, which corresponds to a specific mass flow m s p of 5.4 kg/(m 2 ·h). For the wave angle β , the optimum was found in the range between 58° and 60°. For the wave height h * the optimum values were found to be between 2.64 mm and 2.77 mm. Finally, for the rotary heat exchanger length l , the optimum was found to be between 220 mm and 236 mm. The optimization results show that there is still potential for technical improvements in the design and operation of rotary heat exchangers. In general terms, we recommend that the optimized rotary heat exchanger should cause less pressure drop while resulting in similar heat recovery efficiency. This is because the life cycle assessment shows that the use phase for rotary heat exchangers has the biggest impact on greenhouse gases, specifically by saving on Scope 2 emissions.

Suggested Citation

  • Eloy Melian & Harald Klein & Nikolaus Thißen, 2021. "Economic Optimization of Rotary Heat Exchangers Using CO 2 Pricing Scenarios Based on Validated Fluid Dynamic and Thermodynamic-Based Simulation," Energies, MDPI, vol. 14(13), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:4037-:d:588383
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/4037/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/4037/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefano De Antonellis & Manuel Intini & Cesare Maria Joppolo & Calogero Leone, 2014. "Design Optimization of Heat Wheels for Energy Recovery in HVAC Systems," Energies, MDPI, vol. 7(11), pages 1-20, November.
    2. Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "A review on the air-to-air heat and mass exchanger technologies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 753-774.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eloy Melian & Harald Klein & Nikolaus Thißen, 2020. "Improvement of a Nusselt-Based Simulation Model for Heat Transfer in Rotary Heat Exchangers," Energies, MDPI, vol. 14(1), pages 1-26, December.
    2. Wang, Feng & Liang, Caihua & Zhang, Xiaosong, 2018. "Research of anti-frosting technology in refrigeration and air conditioning fields: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 707-722.
    3. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "Parametric Analysis on an Earth-to-Air Heat Exchanger Employed in an Air Conditioning System," Energies, MDPI, vol. 13(11), pages 1-24, June.
    4. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "The Energy Performances of a Ground-to-Air Heat Exchanger: A Comparison Among Köppen Climatic Areas," Energies, MDPI, vol. 13(11), pages 1-25, June.
    5. Kyungjoo Cho & Dongwoo Cho & Taeyeon Kim, 2020. "Effect of Bypass Control and Room Control Modes on Fan Energy Savings in a Heat Recovery Ventilation System," Energies, MDPI, vol. 13(7), pages 1-18, April.
    6. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    7. Ewa Zender–Świercz, 2021. "A Review of Heat Recovery in Ventilation," Energies, MDPI, vol. 14(6), pages 1-23, March.
    8. Shahsavar, Amin & Khanmohammadi, Shoaib & Khaki, Mahsa & Salmanzadeh, Mazyar, 2018. "Performance assessment of an innovative exhaust air energy recovery system based on the PV/T-assisted thermal wheel," Energy, Elsevier, vol. 162(C), pages 682-696.
    9. Zhang, Chong & Gang, Wenjie & Wang, Jinbo & Xu, Xinhua & Du, Qianzhou, 2019. "Numerical and experimental study on the thermal performance improvement of a triple glazed window by utilizing low-grade exhaust air," Energy, Elsevier, vol. 167(C), pages 1132-1143.
    10. Awais Shah & Deqing Huang & Yixing Chen & Xin Kang & Na Qin, 2017. "Robust Sliding Mode Control of Air Handling Unit for Energy Efficiency Enhancement," Energies, MDPI, vol. 10(11), pages 1-21, November.
    11. Hunt, David & Mac Suibhne, Naoise & Dimache, Laurentiu & McHugh, David & Lohan, John, 2020. "Advances in multifunctional balanced ventilation technology for dwellings and arising challenge to quantify energy efficiency and renewable generation contributions using international test standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Liu, Peng & Justo Alonso, Maria & Mathisen, Hans Martin, 2023. "Global sensitivity analysis and optimal design of heat recovery ventilation for zero emission buildings," Applied Energy, Elsevier, vol. 329(C).
    13. Bai, H.Y. & Liu, P. & Justo Alonso, M. & Mathisen, H.M., 2022. "A review of heat recovery technologies and their frost control for residential building ventilation in cold climate regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    14. Laith Al-Hyari & Miklos Kassai, 2020. "Development and Experimental Validation of TRNSYS Simulation Model for Heat Wheel Operated in Air Handling Unit," Energies, MDPI, vol. 13(18), pages 1-13, September.
    15. Qi Xu & Saffa Riffat & Shihao Zhang, 2019. "Review of Heat Recovery Technologies for Building Applications," Energies, MDPI, vol. 12(7), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:4037-:d:588383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.