IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1815-d343330.html
   My bibliography  Save this article

Effect of Bypass Control and Room Control Modes on Fan Energy Savings in a Heat Recovery Ventilation System

Author

Listed:
  • Kyungjoo Cho

    (Korea Institute of Civil Engineering & Building Technology, 283 Goyangdae-Ro, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do 10223, Korea
    Department of Architectural Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea)

  • Dongwoo Cho

    (Korea Institute of Civil Engineering & Building Technology, 283 Goyangdae-Ro, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do 10223, Korea)

  • Taeyeon Kim

    (Department of Architectural Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea)

Abstract

This study makes a novel attempt to analyse the effect of the bypass control and room control modes on ventilation energy saving in an 84 m 2 housing unit, which is the most frequently constructed unit-type among newly constructed apartment buildings in Korea. A heat recovery ventilation system was installed. The fan power consumption was measured via field experiments and analyses were made for potential energy savings. Experiments to confirm the power-saving effect owing to the application of the room control mode were performed under the heat recovery and bypass modes, using three air flow rates (0.5, 1.0 and 1.5 ACH). Additionally, the annual energy saving based on the application of the mixed mode (both bypass and room control modes) was calculated. The results obtained showed that when the mixed mode was employed, ventilation energy saving up to 10.76%–16.56%, which is greater than that obtained using only the heat recovery mode, was realized. Additionally, compared with all-room-ventilation, 26.69%–61.84% of ventilation energy could be saved if the mixed mode was applied only to the living room.

Suggested Citation

  • Kyungjoo Cho & Dongwoo Cho & Taeyeon Kim, 2020. "Effect of Bypass Control and Room Control Modes on Fan Energy Savings in a Heat Recovery Ventilation System," Energies, MDPI, vol. 13(7), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1815-:d:343330
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1815/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1815/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "A review on the air-to-air heat and mass exchanger technologies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 753-774.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ewa Zender–Świercz, 2021. "A Review of Heat Recovery in Ventilation," Energies, MDPI, vol. 14(6), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Feng & Liang, Caihua & Zhang, Xiaosong, 2018. "Research of anti-frosting technology in refrigeration and air conditioning fields: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 707-722.
    2. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "Parametric Analysis on an Earth-to-Air Heat Exchanger Employed in an Air Conditioning System," Energies, MDPI, vol. 13(11), pages 1-24, June.
    3. Eloy Melian & Harald Klein & Nikolaus Thißen, 2021. "Economic Optimization of Rotary Heat Exchangers Using CO 2 Pricing Scenarios Based on Validated Fluid Dynamic and Thermodynamic-Based Simulation," Energies, MDPI, vol. 14(13), pages 1-19, July.
    4. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "The Energy Performances of a Ground-to-Air Heat Exchanger: A Comparison Among Köppen Climatic Areas," Energies, MDPI, vol. 13(11), pages 1-25, June.
    5. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    6. Ewa Zender–Świercz, 2021. "A Review of Heat Recovery in Ventilation," Energies, MDPI, vol. 14(6), pages 1-23, March.
    7. Zhang, Chong & Gang, Wenjie & Wang, Jinbo & Xu, Xinhua & Du, Qianzhou, 2019. "Numerical and experimental study on the thermal performance improvement of a triple glazed window by utilizing low-grade exhaust air," Energy, Elsevier, vol. 167(C), pages 1132-1143.
    8. Hunt, David & Mac Suibhne, Naoise & Dimache, Laurentiu & McHugh, David & Lohan, John, 2020. "Advances in multifunctional balanced ventilation technology for dwellings and arising challenge to quantify energy efficiency and renewable generation contributions using international test standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Bai, H.Y. & Liu, P. & Justo Alonso, M. & Mathisen, H.M., 2022. "A review of heat recovery technologies and their frost control for residential building ventilation in cold climate regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Eloy Melian & Harald Klein & Nikolaus Thißen, 2020. "Improvement of a Nusselt-Based Simulation Model for Heat Transfer in Rotary Heat Exchangers," Energies, MDPI, vol. 14(1), pages 1-26, December.
    11. Qi Xu & Saffa Riffat & Shihao Zhang, 2019. "Review of Heat Recovery Technologies for Building Applications," Energies, MDPI, vol. 12(7), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1815-:d:343330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.