IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3871-d583469.html
   My bibliography  Save this article

Performance Analysis of Variable Mode Adsorption Chiller at Different Recooling Water Temperatures

Author

Listed:
  • Ahmad A. Alsarayreh

    (Precision Industries, Dubai P.O. Box 37448, United Arab Emirates)

  • Ayman Al-Maaitah

    (Wahaj Investment L.L.C., 24B St, Comm-365, Ind 2, Dubai P.O. Box 37448, United Arab Emirates)

  • Menwer Attarakih

    (Department of Chemical Engineering, University of Jordan, Queen Rania St, Amman 11942, Jordan)

  • Hans-Jörg Bart

    (Thermische Verfahrenstechnik, TU Kaiserslautern, 67653 Kaiserslautern, Germany)

Abstract

Adsorption cooling can recover waste heat at low temperature levels, thereby saving energy and reducing greenhouse gas emissions. An air-cooled adsorption cooling system reduces water consumption and the technical problems associated with wet-cooling systems; however, it is difficult to maintain a constant recooling water temperature using such a system. To overcome this limitation, a variable mode adsorption chiller concept was introduced and investigated in this study. A prototype adsorption chiller was designed and tested experimentally and numerically using the lumped model. Experimental and numerical results showed good agreement and a similar trend. The adsorbent pairs investigated in this chiller consisted of silicoaluminophosphate (SAPO-34)/water. The experimental isotherm data were fitted to the Dubinin–Astakhov (D–A), Freundlich, Hill, and Sun and Chakraborty (S–C) models. The fitted data exhibited satisfactory agreement with the experimental data except with the Freundlich model. In addition, the adsorption kinetics parameters were calculated using a linear driving force model that was fitted to the experimental data with high correlation coefficients. The results show that the kinetics of the adsorption parameters were dependent on the partial pressure ratio. Four cooling cycle modes were investigated: single stage mode and mass recovery modes with duration times of 25%, 50%, and 75% of the cooling cycle time (denoted as short, medium, and long mass recovery, respectively). The cycle time was optimized based on the maximum cooling capacity. The single stage, short mass recovery, and medium mass recovery modes were found to be the optimum modes at lower (<35 °C), medium (35–44 °C), and high (>44 °C) recooling temperatures. Notably, the recooling water temperature profile is very important for assessing and optimizing the suitable working mode.

Suggested Citation

  • Ahmad A. Alsarayreh & Ayman Al-Maaitah & Menwer Attarakih & Hans-Jörg Bart, 2021. "Performance Analysis of Variable Mode Adsorption Chiller at Different Recooling Water Temperatures," Energies, MDPI, vol. 14(13), pages 1-26, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3871-:d:583469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3871/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3871/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aep Saepul Uyun & Takahiko Miyazaki & Yuki Ueda & Atsushi Akisawa, 2009. "Experimental Investigation of a Three-Bed Adsorption Refrigeration Chiller Employing an Advanced Mass Recovery Cycle," Energies, MDPI, vol. 2(3), pages 1-14, July.
    2. Wang, R. Z., 2001. "Adsorption refrigeration research in Shanghai Jiao Tong University," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(1), pages 1-37, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Sosnowski & Jaroslaw Krzywanski & Norbert Skoczylas, 2022. "Adsorption Desalination and Cooling Systems: Advances in Design, Modeling and Performance," Energies, MDPI, vol. 15(11), pages 1-6, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar-powered closed physisorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2516-2538.
    2. Tierney, Michael J., 2008. "Feasibility of driving convective thermal wave chillers with low-grade heat," Renewable Energy, Elsevier, vol. 33(9), pages 2097-2108.
    3. Zhai, X.Q. & Wang, R.Z. & Dai, Y.J. & Wu, J.Y. & Ma, Q., 2008. "Experience on integration of solar thermal technologies with green buildings," Renewable Energy, Elsevier, vol. 33(8), pages 1904-1910.
    4. Zhai, X.Q. & Wang, R.Z., 2009. "A review for absorbtion and adsorbtion solar cooling systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1523-1531, August.
    5. Jiangzhou, S & Wang, R.Z & Lu, Y.Z & Xu, Y.X & Wu, J.Y & Li, Z.H, 2003. "Locomotive driver cabin adsorption air-conditioner," Renewable Energy, Elsevier, vol. 28(11), pages 1659-1670.
    6. Yong, Li & Sumathy, K., 2002. "Review of mathematical investigation on the closed adsorption heat pump and cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(4), pages 305-338, August.
    7. Chorowski, Maciej & Pyrka, Piotr, 2015. "Modelling and experimental investigation of an adsorption chiller using low-temperature heat from cogeneration," Energy, Elsevier, vol. 92(P2), pages 221-229.
    8. Askalany, Ahmed A. & Saha, Bidyut B. & Kariya, Keishi & Ismail, Ibrahim M. & Salem, Mahmoud & Ali, Ahmed H.H. & Morsy, Mahmoud G., 2012. "Hybrid adsorption cooling systems–An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5787-5801.
    9. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
    10. Deng, Jian & Wang, Ruzhu & Wu, Jingyi & Han, Guyong & Wu, Dawei & Li, Sheng, 2008. "Exergy cost analysis of a micro-trigeneration system based on the structural theory of thermoeconomics," Energy, Elsevier, vol. 33(9), pages 1417-1426.
    11. Karol Sztekler & Tomasz Siwek & Wojciech Kalawa & Lukasz Lis & Lukasz Mika & Ewelina Radomska & Wojciech Nowak, 2021. "CFD Analysis of Elements of an Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 14(22), pages 1-19, November.
    12. Anand, S. & Gupta, A. & Tyagi, S.K., 2015. "Solar cooling systems for climate change mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 143-161.
    13. Teng, W.S. & Leong, K.C. & Chakraborty, A., 2016. "Revisiting adsorption cooling cycle from mathematical modelling to system development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 315-332.
    14. Alahmer, Ali & Ajib, Salman & Wang, Xiaolin, 2019. "Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 138-158.
    15. Wang, S.G. & Wang, R.Z., 2005. "Recent developments of refrigeration technology in fishing vessels," Renewable Energy, Elsevier, vol. 30(4), pages 589-600.
    16. Sharafian, Amir & Bahrami, Majid, 2014. "Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 440-451.
    17. Karol Sztekler & Wojciech Kalawa & Lukasz Mika & Jaroslaw Krzywanski & Karolina Grabowska & Marcin Sosnowski & Wojciech Nowak & Tomasz Siwek & Artur Bieniek, 2020. "Modeling of a Combined Cycle Gas Turbine Integrated with an Adsorption Chiller," Energies, MDPI, vol. 13(3), pages 1-12, January.
    18. Hassan Zohair Hassan, 2014. "Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy Using Silica Gel and Water as the Working Pair," Energies, MDPI, vol. 7(10), pages 1-19, October.
    19. Xiao, Chaofeng & Luo, Huilong & Tang, Runsheng & Zhong, Hao, 2004. "Solar thermal utilization in China," Renewable Energy, Elsevier, vol. 29(9), pages 1549-1556.
    20. Pulat, E. & Etemoglu, A.B. & Can, M., 2009. "Waste-heat recovery potential in Turkish textile industry: Case study for city of Bursa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 663-672, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3871-:d:583469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.