IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3796-d581287.html
   My bibliography  Save this article

Co-Combustion Studies of Low-Rank Coal and Refuse-Derived Fuel: Performance and Reaction Kinetics

Author

Listed:
  • Mudassar Azam

    (Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology (TU WIEN), Getreidemarkt 9, 1060 Vienna, Austria
    Institute of Chemical Engineering & Technology (ICET), University of the Punjab, Lahore 54590, Pakistan)

  • Asma Ashraf

    (Institute of Chemical Engineering & Technology (ICET), University of the Punjab, Lahore 54590, Pakistan
    Sharif College of Engineering & Technology, University of Engineering and Technology (UET), Lahore 39161, Pakistan)

  • Saman Setoodeh Jahromy

    (Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology (TU WIEN), Getreidemarkt 9, 1060 Vienna, Austria)

  • Sajjad Miran

    (Department of Mechanical Engineering, University of Gujrat, Gujrat 50700, Pakistan)

  • Nadeem Raza

    (Department of Chemistry, Emerson University Multan, Multan 60000, Pakistan)

  • Florian Wesenauer

    (Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology (TU WIEN), Getreidemarkt 9, 1060 Vienna, Austria)

  • Christian Jordan

    (Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology (TU WIEN), Getreidemarkt 9, 1060 Vienna, Austria)

  • Michael Harasek

    (Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology (TU WIEN), Getreidemarkt 9, 1060 Vienna, Austria)

  • Franz Winter

    (Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology (TU WIEN), Getreidemarkt 9, 1060 Vienna, Austria)

Abstract

In connection to present energy demand and waste management crisis in Pakistan, refuse-derived fuel (RDF) is gaining importance as a potential co-fuel for existing coal fired power plants. This research focuses on the co-combustion of low-quality local coal with RDF as a mean to reduce environmental issues in terms of waste management strategy. The combustion characteristics and kinetics of coal, RDF, and their blends were experimentally investigated in a micro-thermal gravimetric analyzer at four heating rates of 10, 20, 30, and 40 °C/min to ramp the temperature from 25 °C to 1000 °C. The mass percentages of RDF in the coal blends were 10%, 20%, 30%, and 40%, respectively. The results show that as the RDF in blends increases, the reactivity of the blends increases, resulting in lower ignition temperatures and a shift in peak and burnout temperatures to a lower temperature zone. This indicates that there was certain interaction during the combustion process of coal and RDF. The activation energies of the samples were calculated using kinetic analysis based on Kissinger–Akahira–Sunnose (KAS) and Flynn–Wall–Ozawa (FWO), isoconversional methods. Both of the methods have produced closer results with average activation energy between 95–121 kJ/mol. With a 30% refuse-derived fuel proportion, the average activation energy of blends hit a minimum value of 95 kJ/mol by KAS method and 103 kJ/mol by FWO method.

Suggested Citation

  • Mudassar Azam & Asma Ashraf & Saman Setoodeh Jahromy & Sajjad Miran & Nadeem Raza & Florian Wesenauer & Christian Jordan & Michael Harasek & Franz Winter, 2021. "Co-Combustion Studies of Low-Rank Coal and Refuse-Derived Fuel: Performance and Reaction Kinetics," Energies, MDPI, vol. 14(13), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3796-:d:581287
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3796/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3796/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Zhi Hua & Sethupathi, Sumathi & Lee, Keat Teong & Bhatia, Subhash & Mohamed, Abdul Rahman, 2013. "An overview on global warming in Southeast Asia: CO2 emission status, efforts done, and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 71-81.
    2. Lu, Jau-Jang & Chen, Wei-Hsin, 2015. "Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis," Applied Energy, Elsevier, vol. 160(C), pages 49-57.
    3. Zuberi, M. Jibran S. & Ali, Shazia F., 2015. "Greenhouse effect reduction by recovering energy from waste landfills in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 117-131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaroslaw Krzywanski & Wojciech Nowak & Karol Sztekler, 2022. "Novel Combustion Techniques for Clean Energy," Energies, MDPI, vol. 15(13), pages 1-3, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    3. Roy, S. & Lam, Y.F. & Hossain, M.U. & Chan, J.C.L., 2022. "Comprehensive evaluation of electricity generation and emission reduction potential in the power sector using renewable alternatives in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Ihsanullah Sohoo & Marco Ritzkowski & Kerstin Kuchta & Senem Önen Cinar, 2020. "Environmental Sustainability Enhancement of Waste Disposal Sites in Developing Countries through Controlling Greenhouse Gas Emissions," Sustainability, MDPI, vol. 13(1), pages 1-12, December.
    5. Hillig, Débora Moraes & Pohlmann, Juliana Gonçalves & Manera, Christian & Perondi, Daniele & Pereira, Fernando Marcelo & Altafini, Carlos Roberto & Godinho, Marcelo, 2020. "Evaluation of the structural changes of a char produced by slow pyrolysis of biomass and of a high-ash coal during its combustion and their role in the reactivity and flue gas emissions," Energy, Elsevier, vol. 202(C).
    6. Leandro C. de Morais & Amanda A. Maia & Pedro R. Resende & André H. Rosa & Leonel J. R. Nunes, 2022. "Thermochemical Conversion of Sugarcane Bagasse: A Comprehensive Analysis of Ignition and Burnout Temperatures," Clean Technol., MDPI, vol. 4(4), pages 1-11, November.
    7. Jibran Hussain & Sallahuddin Hassan, 2019. "Oil Prices Dynamics and the State of Energy Crisis in Pakistan," Pakistan Journal of Humanities and Social Sciences, International Research Alliance for Sustainable Development (iRASD), vol. 7(2), pages :203-217, June.
    8. Kuan, Yong-Hao & Wu, Fang-Hsien & Chen, Guan-Bang & Lin, Hsien-Tsung & Lin, Ta-Hui, 2020. "Study of the combustion characteristics of sewage sludge pyrolysis oil, heavy fuel oil, and their blends," Energy, Elsevier, vol. 201(C).
    9. Ihsanullah Sohoo & Marco Ritzkowski & Zubair Ahmed Sohu & Senem Önen Cinar & Zhi Kai Chong & Kerstin Kuchta, 2021. "Estimation of Methane Production and Electrical Energy Generation from Municipal Solid Waste Disposal Sites in Pakistan," Energies, MDPI, vol. 14(9), pages 1-17, April.
    10. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    11. Małgorzata Sieradzka & Agata Mlonka-Mędrala & Izabela Kalemba-Rec & Markus Reinmöller & Felix Küster & Wojciech Kalawa & Aneta Magdziarz, 2022. "Evaluation of Physical and Chemical Properties of Residue from Gasification of Biomass Wastes," Energies, MDPI, vol. 15(10), pages 1-19, May.
    12. Leonel J. R. Nunes & Abel M. Rodrigues & João C. O. Matias & Ana I. Ferraz & Ana C. Rodrigues, 2021. "Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry," Agriculture, MDPI, vol. 11(6), pages 1-15, May.
    13. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    14. Xu, Li & Li, Shengcai & Sun, Wanghu & Ma, Xin & Cao, Shuchao, 2020. "Combustion behaviors and characteristic parameters determination of sassafras wood under different heating conditions," Energy, Elsevier, vol. 203(C).
    15. Mau, Vivian & Gross, Amit, 2018. "Energy conversion and gas emissions from production and combustion of poultry-litter-derived hydrochar and biochar," Applied Energy, Elsevier, vol. 213(C), pages 510-519.
    16. Liu, Jiazheng & Zhong, Fei & Niu, Wenjuan & Su, Jing & Gao, Ziqi & Zhang, Kai, 2019. "Effects of heating rate and gas atmosphere on the pyrolysis and combustion characteristics of different crop residues and the kinetics analysis," Energy, Elsevier, vol. 175(C), pages 320-332.
    17. Riaz, Sajid & Oluwoye, Ibukun & Al-Abdeli, Yasir M., 2022. "Oxidative torrefaction of densified woody biomass: Performance, combustion kinetics and thermodynamics," Renewable Energy, Elsevier, vol. 199(C), pages 908-918.
    18. Burlakovs, Juris & Kriipsalu, Mait & Klavins, Maris & Bhatnagar, Amit & Vincevica-Gaile, Zane & Stenis, Jan & Jani, Yahya & Mykhaylenko, Valeriy & Denafas, Gintaras & Turkadze, Tsitsino & Hogland, Mar, 2017. "Paradigms on landfill mining: From dump site scavenging to ecosystem services revitalization," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 73-84.
    19. Shi, Kaiqi & Oladejo, Jumoke Mojisola & Yan, Jiefeng & Wu, Tao, 2019. "Investigation on the interactions among lignocellulosic constituents and minerals of biomass and their influences on co-firing," Energy, Elsevier, vol. 179(C), pages 129-137.
    20. Vieira, José Geraldo Vidal & Mendes, Juliana Veiga & Suyama, Suzi Sanae, 2016. "Shippers and freight operators perceptions of sustainable initiatives," Evaluation and Program Planning, Elsevier, vol. 54(C), pages 173-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3796-:d:581287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.