IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3736-d579818.html
   My bibliography  Save this article

The Structure and Optimal Gear Tooth Profile Design of Two-Speed Transmission for Electric Vehicles

Author

Listed:
  • Jae-Oh Han

    (Mechanical Engineering Department, Chung-Ang University, Seoul 06974, Korea)

  • Won-Hyeong Jeong

    (Mechanical Engineering Department, Chung-Ang University, Seoul 06974, Korea)

  • Jong-Seok Lee

    (Mechanical Engineering Department, Chung-Ang University, Seoul 06974, Korea)

  • Se-Hoon Oh

    (Mechanical Engineering Department, Chung-Ang University, Seoul 06974, Korea)

Abstract

As environmental regulations have been strengthened worldwide since the Paris Climate Agreement, the automobile industry is shifting its production paradigm to focus on eco-friendly vehicles such as electric vehicles and hydrogen-battery vehicles. Governments are banning fossil fuel vehicles by law and expanding the introduction of green vehicles. The energy efficiency of electric vehicles that use a limited power source called batteries depends on the driving environment. Applying a two-speed transmission to an electric vehicle can optimize average speed and performance efficiency at low speeds, and achieve maximum speed with minimal torque at high speeds. In this study, a two-speed transmission for an electric vehicle has been developed, to be used in a compact electric vehicle. This utilizes a planetary gear of a total of three pairs, made of a single module which was intended to enable two-speed. The ring gear was removed, and the carrier was used in common. When shifting, the energy used for the speed change is small, due to the use of the simple method of fixing the sun gear of each stage. Each gear was designed by calculating bending strength and surface durability, using JGMA standards, to secure stability. The safety factor of the gears used in the transmission is as follows: all gears have been verified for safety with a bending strength of 1.2 or higher and a surface pressure strength of 1.1 or higher. The design validity of the transmission was verified by calculating the gear meshing ratio and the reference efficiency of the gear. The transmission to be developed through the research results of this paper has a simple and compact structure optimized for electric vehicles, and has reduced shift shock. In addition, energy can be used more efficiently, which will help improve fuel economy and increase drive range.

Suggested Citation

  • Jae-Oh Han & Won-Hyeong Jeong & Jong-Seok Lee & Se-Hoon Oh, 2021. "The Structure and Optimal Gear Tooth Profile Design of Two-Speed Transmission for Electric Vehicles," Energies, MDPI, vol. 14(13), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3736-:d:579818
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3736/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3736/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tae-Woo Lee & Do-Kwan Hong, 2021. "Electrical and Mechanical Characteristics of a High-Speed Motor for Electric Turbochargers in Relation to Eccentricity," Energies, MDPI, vol. 14(11), pages 1-14, June.
    2. Tran, Dai-Duong & Vafaeipour, Majid & El Baghdadi, Mohamed & Barrero, Ricardo & Van Mierlo, Joeri & Hegazy, Omar, 2020. "Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Andrzej Szałek & Ireneusz Pielecha, 2021. "The Influence of Engine Downsizing in Hybrid Powertrains on the Energy Flow Indicators under Actual Traffic Conditions," Energies, MDPI, vol. 14(10), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    2. Pierpaolo Polverino & Ivan Arsie & Cesare Pianese, 2021. "Optimal Energy Management for Hybrid Electric Vehicles Based on Dynamic Programming and Receding Horizon," Energies, MDPI, vol. 14(12), pages 1-11, June.
    3. Yi Zhang & Qiang Guo & Jie Song, 2023. "Internet-Distributed Hardware-in-the-Loop Simulation Platform for Plug-In Fuel Cell Hybrid Vehicles," Energies, MDPI, vol. 16(18), pages 1-17, September.
    4. Singh, Somendra Pratap & Hanif, Athar & Ahmed, Qadeer & Meijer, Maarten & Lahti, John, 2022. "Optimal management of electric hotel loads in mild hybrid heavy duty truck," Applied Energy, Elsevier, vol. 326(C).
    5. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
    7. Chen, Fujun & Wang, Bowen & Ni, Meng & Gong, Zhichao & Jiao, Kui, 2024. "Online energy management strategy for ammonia-hydrogen hybrid electric vehicles harnessing deep reinforcement learning," Energy, Elsevier, vol. 301(C).
    8. Gustavo Navarro & Jorge Torres & Marcos Blanco & Jorge Nájera & Miguel Santos-Herran & Marcos Lafoz, 2021. "Present and Future of Supercapacitor Technology Applied to Powertrains, Renewable Generation and Grid Connection Applications," Energies, MDPI, vol. 14(11), pages 1-29, May.
    9. Fabio Orecchini & Adriano Santiangeli & Fabrizio Zuccari & Adriano Alessandrini & Fabio Cignini & Fernando Ortenzi, 2021. "Real Drive Truth Test of the Toyota Yaris Hybrid 2020 and Energy Analysis Comparison with the 2017 Model," Energies, MDPI, vol. 14(23), pages 1-22, December.
    10. Matthieu Matignon & Toufik Azib & Mehdi Mcharek & Ahmed Chaibet & Adriano Ceschia, 2023. "Real-Time Integrated Energy Management Strategy Applied to Fuel Cell Hybrid Systems," Energies, MDPI, vol. 16(6), pages 1-21, March.
    11. Ge, Dongdong & Jin, Guiyang & Wang, Jianqiang & Zhang, Zhendong, 2024. "A novel data-driven IBA-ELM model for SOH/SOC estimation of lithium-ion batteries," Energy, Elsevier, vol. 305(C).
    12. Dwivedi, Pankaj Prasad & Sharma, Dilip Kumar, 2023. "Evaluation and ranking of battery electric vehicles by Shannon’s entropy and TOPSIS methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 457-474.
    13. Abdulgader Alsharif & Chee Wei Tan & Razman Ayop & Ahmed Al Smin & Abdussalam Ali Ahmed & Farag Hamed Kuwil & Mohamed Mohamed Khaleel, 2023. "Impact of Electric Vehicle on Residential Power Distribution Considering Energy Management Strategy and Stochastic Monte Carlo Algorithm," Energies, MDPI, vol. 16(3), pages 1-22, January.
    14. Naoui Mohamed & Flah Aymen & Abdullah Altamimi & Zafar A. Khan & Sbita Lassaad, 2022. "Power Management and Control of a Hybrid Electric Vehicle Based on Photovoltaic, Fuel Cells, and Battery Energy Sources," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    15. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    16. Adriano Ceschia & Toufik Azib & Olivier Bethoux & Francisco Alves, 2022. "Multi-Criteria Optimal Design for FUEL Cell Hybrid Power Sources," Energies, MDPI, vol. 15(9), pages 1-18, May.
    17. Chi T. P. Nguyen & Bảo-Huy Nguyễn & Minh C. Ta & João Pedro F. Trovão, 2023. "Dual-Motor Dual-Source High Performance EV: A Comprehensive Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
    18. Danijel Pavković & Mihael Cipek & Filip Plavac & Juraj Karlušić & Matija Krznar, 2022. "Internal Combustion Engine Starting and Torque Boosting Control System Design with Vibration Active Damping Features for a P0 Mild Hybrid Vehicle Configuration," Energies, MDPI, vol. 15(4), pages 1-24, February.
    19. Sun, Xiaojun & Yao, Chong & Song, Enzhe & Liu, Zhijiang & Ke, Yun & Ding, Shunliang, 2023. "Novel enhancement of energy distribution for marine hybrid propulsion systems by an advanced variable weight decision model predictive control," Energy, Elsevier, vol. 274(C).
    20. Tang, Wenbin & Wang, Yaqian & Jiao, Xiaohong & Ren, Lina, 2023. "Hierarchical energy management strategy based on adaptive dynamic programming for hybrid electric vehicles in car-following scenarios," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3736-:d:579818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.